Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The development of the concept of Thermomechanical Controlled Processing (TMCP) in the wire rod rolling mill of CMC Poland has opened up new opportunities for the production of fasteners without the application of heat treatment. The crucial effect of TMCP in the case of wire rod rolling is its capability of shaping fine austenite grain size following the last pass, typically below 20–25 µm in the wire rod cross-section. This is a prerequisite for obtaining the required cold workability level for the cold forming of fasteners, even if hard constituents (bainite, martensite) are present in the wire rod structure. In this paper, the physical simulation and numerical modelling capabilities were described for the design of cooling conditions in the Stelmor process and cold heading operation. The investigated material was conventional 32CrB4 grade used for the fasteners production with the application of heat treatment.
EN
It is generally recognized that the kinetics of phase transformations during the cooling of steel products depends to a large extent on the state of the austenite after rolling. Austenite deformation (when recrystallization is not complete) and grain size have a strong influence on the nucleation and growth of low-temperature phases. Thus, the general objective of the present work was the formulation of a numerical model which simulates thermal, mechanical and microstructural phenomena during multipass hot rolling of flat bars. The simulation of flat bar rolling accounting for the evolution of a heterogeneous microstructure was the objective of the work. A conventional finite-element program was used to calculate the distribution of strains, stresses, and temperatures in the flat bar during rolling and during interpass times. The FE program was coupled with the stochastic model describing austenite microstructure evolution. In this model, the random character of the recrystallization was accounted for. Simulations supplied information about the distributions of the dislocation density and the grain size at various locations through the thickness of the bars.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.