Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
On the 28th of June 2017, the Polish Ministry of the Environment announced the boundaries of the tender areas selected for the third licensing round for concessions for prospection, exploration and exploitation of hydrocarbons. This round is going to be proceeded in the 4th Quarter of 2018 and 1st Quarter of 2019. The geologists of the Polish Geological Survey selected 15 tender areas (promising for discoveries of conventional and unconventional oil and gas fields) based on the geological data resources stored in the National Geological Archive, other published data, as well as the knowledge and experience of employees of the Polish Geological Institute - National Research Institute and the Polish Ministry of the Environment. All selected areas are located onshore. In this article we describe 10 tender areas located in the Gdańsk, Pomerania and Wielkopolska petroleum provinces. Other tender areas situated in the Carpathians (Błażowa, Proszowice W, Rudnik-Lipiny, Wetlina) and in the Lublin Petroleum Province (Ryki) will be discussed in the next publication. Three areas: Wejherowo, Bytów and Braniewo-Miłakowo are located in the northern Poland (Gdańsk Petroleum Province). The exploration targets of these areas are generally related to structural-lithological traps in the Middle Cambrian beds of the Baltic Basin, as well as to unconventional shale oil and gas in the Lower Paleozoic. Seven tender areas are situated in the northwestern Poland (Pomerania and Wielkopolska Petroleum Provinces). Three of them - Chodzież, Piła and Leszno are dedicated to conventional gas deposits in the Rotliegend sandstones and, in some cases, also oil deposits in the Zechstein/Main Dolomite. Excluding the Leszno tender area, chances for tight gas discoveries exist within the Rotliegend sandstones. The exploration target of the Konin tender area is related to possible conventional fields in the Jurassic and Lower Cretaceous beds. In the Pomerania region the exploration target is generally related to conventional hydrocarbon deposits in the Devonian, Carboniferous and Permian (Rotliegend and Zechstein/Main Dolomite). Three tender areas are situated within the region of: Sierpowo, Orle and Chełmno. As a rule, a concession is granted for a period of 10 to 30 years and is divided into 2 phases: 1) prospecting and exploration phase (which lasts from 4 to 5 years and can be extended to another 2-year period), 2) production phase. Every entity interested in obtaining a concession needs to undergo the qualification procedure. We believe that this publication will contribute to better understanding of the offered tender areas and encourage activity in the Polish oil and gas sector.
EN
A taxonomic account of the Callovian crinoid fauna from the Żebrak IG 1 borehole (eastern Poland) is presented. The assemblage contains numerous isocrinid ossicles (Isocrinidae) assigned to the following taxa: Isocrinus cf. nicoleti (Desor), Isocrinus sp., Chariocrinus andreae (Desor), Balanocrinus cf. subteres (Münster in Goldfuss) and Pentacrinites sp. These isocrinids are associated with a few ossicles of cyrtocrinids (Cyrtocrinida; Cyrtocrinida indet.). The crinoid remains are poorly preserved; they all are isolated ossicles, showing broken margins and/or abraded surfaces. Such a state of preservation documents a long distance of transportation and/or re-deposition in a high-energy, shallow-water setting. The crinoid assemblage differs significantly from those of southern Poland (the Polish Jura Chain and the Mesozoic margin of the Holy Cross Mountains), in which sessile crinoids, such as cyrtocrinids (Cyrtocrinida), inhabiting mostly deeper-water carbonate facies, are predominant.
EN
The paper presents the characteristics of prospective zones identified for the first time within the lower Palaeozoic shale formations occurring in the Baltic-Podlasie-Lublin Basin and within the Carboniferous shale, sandstone, and mixed shale-sandstone complexes (the so-called hybrid complexes) in the basin of south-western Poland. The lateral and vertical ranges of these zones are determined based on specific criteria using the results of various research methods and analyses, i.e.: stratigraphic, sedimentological, mineralogical, petrological and geochemical of organic matter, petrographic and petrophysical, including interpretation of well logs. Archived geological materials and those coming from the boreholes drilled recently in the concession areas were also used. Four prospective zones have been distinguished in the lower Palaeozoic of the so-called shale belt: SP1, SP2, SP3 and SP4. The most prospective area for the occurrence of unconventional hydrocarbon deposits in shale formations is the Baltic region – the Łeba Elevation, where there are all four perspective zones, only partially covering the range of potentially prospective formations. In each of these zones, both liquid and gas hydrocarbons can be expected in this area. Due to the low percentage of organic matter, the lowest hydrocarbon generation potential is attributed to the Lublin region. However, the low values of this parameter are compensated by other parameters, i.e. the considerable thickness and lateral extent of zone SP4 corresponding partly to the Pelplin Formation. In the Carboniferous rocks of south-western Poland, seven prospective zones have been distinguished in four borehole sections. Four of them are “tight” zones in compact sandstones, while the other three zones represent a hybrid type in complexes with mixed lithology. No prospective zones have been defined in complexes with homogeneous shale lithologies. Determination of lateral extents of the identified zones has not been possible due to the scarcity of data on the geological structure and stratigraphy of the Carboniferous succession in the study area
EN
The paper presents a sedimentological analysis of Ordovician (Sandbian–Hirnantian = Caradoc–Ashgill) and Silurian (Landovery–Wenlock, lower Ludlow) claystones and mudstones from the north-eastern (Baltic Basin) and south-eastern (Podlasie-Lublin Basin) parts of the East European Craton. In both basins, formations prospective for shale gas/oil were analyzed: the Sasino Fm., Pasłęk Fm. (including the Jantar Mb.), Pelplin Fm., Udal Fm., Wrotnów Fm. and Terespol Fm. Based on lithological and sedimentological criteria, 34 lithofacies and 11 lithofacies associations have been distinguished. The most promising lithofacies arerepresentedbytheL-1,L-3andL-4associationswhicharecharacterizedbydarkgreycolour, a very low degree or lack of bioturbation, rare sedimentary structures, and common content of small pyrite concretions. They dominate in the Sasino Fm., Pas³êk Fm. (in the Jantar Mb. only) and Pelplin Fm., but are much less common in the Udal Fm., Terespol Fm. and Pas³êk Fm. (excluding the Jantar Mb.).
EN
The Kamyanyi (Kaminnyi) Potik Unit (Nappe) is the most internal and structurally-highest unit of the Fore-Marmarosh units, and in many places is directly covered by the Marmarosh Nappes of the Marmarosh Crystalline Massif. Chyvchyn Mount is built of this unit and forms a separate tectonic cap (Chyvchyn Mt. Klippe). It consists of the Upper Jurassic/lowermost Cretaceous Chyvchyn Formation, composed mainly of basic volcanic rocks, and the Tithonian-Early Cretaceous Kamyanyi Potik Formation, represented by calcareous and/or turbiditic deposits containing volcanic material. Geological mapping showed that this complex forms a tectonic klippe, which consists of four small tectonic thrust slices. Structurally, the lowermost one is represented by thin-bedded micritic limestones with cherts, and is interbedded with coarse/fine-grained calcareous pyroclastic turbidites (flysch). The second thrust slice is composed of calcareous-pyroclastic breccia with blocks of limestone, basalt, and chert (radiolarite?), which occur within a pyroclastic matrix and of coral limestones with basalt fragments and pyroclastic intercalations. The third thrust slice is constructed of breccia with a pyroclastic and volcanic matrix and clasts of effusive rocks and limestone. The fourth thrust slice – the highest – is represented by massive basaltic pillow lavas. Sedimentologically, the volcano-sedimentary complex represents a whole spectrum of marine mass-movement deposits, from debris flows through proximal turbidites to distal ones, which were formed during latest Jurassic/earliest Cretaceous time in the Outer Dacide-Severinide part of the Carpathian basins.
EN
Plant macroremains from five boreholes in Poland were studied. Two of them (Huta OP-1 and Studzianna) from the northern margin of the Holy Cross Mountains, yielded several taxa. In the other three boreholes determinable fossil plants were sporadic, albeit important. Most of the taxa from the Huta OP-1 and Studzianna boreholes are typical of the European Early Jurassic (Hettangian and Sinemurian). Both localities, although close to one another, show quite different taxonomic floral compositions. The Huta OP-1 flora is fern-dominated with the presence of ginkgophytes and conifers (a new species incertae sedis, Desmiophyllum harrisii Barbacka et Pacyna is herein proposed), which would suggest rather wet and warm conditions. This flora is typical of the European Province of the Euro-Sinian Region. In Studzianna the Siberian elements dominate, gymnosperms, mainly Czekanowskiales, which indicate a drier and colder environment.The palaeobotanical data correspond to the results of clay mineral studies, in particular the kaolinite/illite ratio in the source formations. The kaolinite content confirms a decrease in temperature and a reduction in rainfall in the late Early Hettangian and the latest Hettangian in the area.
PL
Dane geologiczne i geofizyczne dotyczące osadów jury i triasu z 53 otworów wiertniczych rejonu północnego Mazowsza zostały przeanalizowane w kontekście możliwości bezpiecznego składowania CO2 w głębokich poziomach wodonośnych. Najbardziej perspektywiczne zarówno ze względu na właściwości petrofizyczne, rozkład miąższości, jak i wykształcenie facjalne są osady najniższego odcinka jury środkowej (aalen dolny) oraz jury dolnej (formacje: borucicka, drzewicka, ostrowiecka, olsztyńska i dolny odcinek formacji zagajskiej). Spośród przeanalizowanych poziomów triasowych, piaskowce poziomu piaskowca trzcinowego wykazują porowatości spełniające kryteria dla składowania CO2, przy często zbyt niskich przepuszczalnościach. Poziomy uszczelniające dla zbiorników jurajskich stanowią odpowiednio utwory iłowcowo-mułowcowe profili: środkowego odcinka bajosu górnego, aalenu górnego, formacji ciechocińskiej oraz górnego odcinka formacji zagajskiej. Nie wszędzie w równym stopniu spełniają one wymagane kryteria miąższościowe, facjalne i petrofizyczne. Na całym obszarze osady triasu górnego (warstwy nidzickie oraz częściowo warstwy bartoszyckie) tworzą iłowcowo-mułowcowy poziom o dobrych parametrach uszczelniających i miąższości powyżej 100 m.
EN
Jurassic and Triassic sediments encountered in 53 deep wells from northern Mazovia were interpreted geologically and geophysically in terms of CO2 storage potential. Reservoir horizons with the most favourable petrophysical properties, thickness patterns and facies were detected within the Middle Jurassic (Lower Aalenian) and Lower Jurassic (Borucice Fm., Drzewica Fm., Ostrowiec Fm., Olsztyn Fm. and lower part of the Zagaje Fm.). The Upper Triassic Schilfsandstein sandstone horizon has been characterized by porosities meeting the CO2 storage criteria. The permeability however is too low in most cases. The thickness, facial and petrophysical criteria of the Jurassic sealing horizons of the middle part of the Upper Bajocian, Upper Aalenian, Ciechocinek Fm. and of the upper part of the Zagaje Fm. are not equally adequate throughout the area. The Upper Triassic Nidzica beds and partially Bartoszyce beds form a sealing horizon of good petrophysical properties and exceeding 100 m in thickness across the whole study area.
PL
Jedną z trzech struktur wytypowanych jako mające najkorzystniejsze warunki dla potrzeb geologicznego składowania CO2 w segmencie Bełchatów jest antyklina Zaosia. Przebadano ją sześcioma głębokimi otworami wiertniczymi: Buków 2, Buków 1, Zaosie 3, Zaosie 1, Zaosie 2 i Budziszewice IG 1. W artykule, materiał dotyczący antykliny Zaosia został poszerzony o informacje pochodzące z otworu Jeżów IG 1, odwierconego w szczycie antykliny Jeżowa. Struktura ta jest zlokalizowana w bliskiej odległości, po północno-wschodniej stronie antykliny Zaosia. Obie struktury charakteryzuje podobna budowa geologiczna oraz zbliżone parametry petrofizyczne skał. Potencjalne poziomy zbiornikowe oraz uszczelniające zostały wytypowane na podstawie analizy materiałów archiwalnych, w tym krzywych profilowań geofizycznych, zachowanych rdzeni wiertniczych oraz wyników nowych analiz petrofizycznych. W ramach przeprowadzonej interpretacji profilowań geofizycznych z głębokich otworów wiertniczych analizowanych struktur opracowano: profile litologiczne dla utworów jury środkowej, dolnej oraz triasu, z wydzieleniem warstw wodonośnych oraz nieprzepuszczalnych, profile zailenia oraz porowatości całkowitej. Określono ponadto głębokościową zmienność mineralizacji wód, z wydzieleniem granicy wód słodkich i słonych. Jako spełniające kryteria przyjęte dla geologicznego składowania CO2 w zakresie miąższości oraz parametrów porowatości i przepuszczalności dla poziomów zbiornikowych, dla antyklin Zaosia i Jeżowa wytypowano dolnojurajskie utwory piaskowcowe formacji drzewickiej (pliensbach górny), a dla antykliny Zaosia – także górnej części formacji ostrowieckiej (synemur). Poziomami uszczelniającymi dla tych formacji są odpowiednio drobnoziarniste utwory formacji ciechocińskiej (toark dolny) i gielniowskiej (pliensbach dolny), których wymienione parametry również potwierdzają przydatność wytypowanej struktury dla potrzeb zatłaczania i bezpiecznego składowania CO2 . Kryterium mineralizacji wód (>10 g/dm3), którą określono w zaprezentowanych otworach na podstawie interpretacji karotażu, może jednak być czynnikiem eliminującym omówione struktury jako potencjalne zbiorniki CO2.
EN
Zaosie anticline is one of the three structures selected as having the best conditions for geological CO2 - storage in the Bełchatów region. It has been tested by 6 deep wells: Buków 2, Buków 1, Zaosie 3, Zaosie 1, Zaosie 2 and Budziszewice IG 1. Additionally, information from the Jeżów IG 1 borehole, drilled on the top of the nearby Jeżów anticline, is added. That structure is located north-east of the Zaosie anticline. Both the structures are characterized by similar geological feature and petrophysical parameters of rocks. Potential reservoirs and seals were selected based on analysis of archival data (geophysical logs, cores) and new petrophysical tests. Interpretation of the geophysical logs from deep wells of the described structures included lithological sections of Middle and Lower Jurassic and Triassic rocks, identification of aquifers and impermeable levels, and mudding and total porosity profiles. Additionally, vertical variability of water mineralization was determined, pointing at the boundary between fresh and salt water. Significant thickness, good reservoir properties and proper depth give sufficient grounds to select the Lower Jurassic sandstone levels of the Drzewica Fm. (Upper Pliensbachian) and the upper part of the Ostrowiec Fm. (Sinemurian) from the Zaosie and Jeżów anticlines as potential reservoirs for CO2 storage. Seal horizons to those formations are fine-grained rocks of the Ciechocinek Fm. (Lower Toarcian) and the Gielniów Fm. (Lower Pliensbachian) respectively. Mentioned parameters also confirm usefulness of the structures for CO2 storage. However the criterion of water mineralization (>10 g/dm3), which was defined in these wells based on interpretation of geophysical logs, can be the factor which eliminate the Zaosie and Jeżów structures as potential CO2 storage reservoirs.
EN
Studzianna well core (Triassic-Jurassic) from the Holy Cross Mts region were investigated. Fossil plants from the genus Neocalamites (Equisetales) were found mainly in the Triassic sediments. Fragments of Ginkgoales and Czekanowskiales and Coniferales were determined mainly from the Lower Jurassic. The Lower Jurassic microflora consists of sporomorphs from Bryophyta, Equisetales, Lycopodiales, Filicales from the family Cyatheaceae or Dicsoniaceae, Pteridospermophyta from Caytoniales, Ginkgoales or Cycadales or Bennettitales, Coniferales from the families Taxodiaceae, Pinaceae and Cheirolepidiaceae. Palynofacies have mainly terrestrial character and confirms earlier opinion (Karaszewski 1962, Pieńkowski 2004) of the prevailed terrestrial origin of the Lower Jurassic (Hettangian-Sinemurian) sediments from the Holy Cross Mts region.
EN
The Polish Basin was the eastern part of the Jurassic European epicontinental basin. The zone of maximum thickness of the Middle Jurassic deposits runs along the so called Mid-Polish Trough which extends from the West Pomerania (NW) to the Holy Cross Mountains (SE), generally along the Teisseyre-Tornquist Zone. The complete litological profile of the Middle Jurassic deposits exceeds 1100 m in the depocentre of the Mid-Polish Trough (in the Kuiavian Region). Sediments are represented by sandstones, mudstones, heteroliths and claystones with intercalations of siderites, dolomites and coquina beds. Subordinately, crinoidal limestones, arenaceous limestones, gaizes and oolitic ironstones occur. Sedimentological studies were based on investigation of cores from ten deep boreholes. Nineteen lithofacies were distinguished: black shales, massive mudstones, bioturbated mudstones, lenticular bedded mudstones, heteroliths, wavy bedded sandstones, flaser bedded sandstones, sandstones with clay drapes, structureless sandstones (massive and bioturbated), parallel bedded sandstones, cross bedded sandstones, HCS (hummocky cross stratification) cross bedded sandstones, ripple bedded sandstones, herringbone cross bedded sandstones, chamosite sandstones, calcareous sandstones and arenaceous limestones, crinoidal limestones, conglomerates, condensed bed. Additionally, 15 ichnogenera of trace fossils: Asterosoma isp., Bergaueria isp., Chondrites isp., Diplocraterion isp., Gyrochorte isp., Lockeia isp., Ophiomorpha isp., Palaeophycus isp., Planolites isp., Rosselia isp., Skolithos isp., (?)Spongeliomorpha isp., Teichichnus isp., Terebellina isp. and Thalassinoides isp. were recognized in the Middle Jurassic deposits of Kuiavian Region. They point to sedimentation in the transition zone - foreshore environments. Based on the geochemical and palaeoecological investigations, four biofacies connected with different oxygenation of the bottom waters during sedimentation of the black shales have been proposed. The Upper Aalenian - Lower Bajocian deposits represent clayey sedimentation which occurred in dysoxic to anoxic environment. On the other hand, the Upper Bajocian - Lower Bathonian deposits represent dysoxic to oxic conditions. Sedimentation of the Middle Jurassic deposits in the central part of the Polish Basin took place in the shallow epicontinental sea, in environment spanning offshore to foreshore zones of a shallow siliciclastic shelf. Precise sedimentological studies point that the Middle Jurassic succession can be divided into 8 transgressive-regressive cycles. The oldest (Lower Aalenian) one begins with estuarine/foreshore sediments, sharply covered with offshore black shale facies. The Upper Aalenian, Bajocian and Lower Bathonian cycles are built of the transgressive offshore black shales and progradational regressive successions composed of mudstones and heteroliths and topped by shallow or middle shoreface sandstones. The Middle and Upper Bathonian cycles begin with transition zone sediments or lower shoreface deposits. The uppermost part of these cycles are built of sandstones and limestones representing the upper shoreface, foreshore and lagoon environments. The transgressive part of the last (Callovian) cycle is documented by carbonate-siliciclastic shoreface deposits which pass upwards into limestones of the Upper Jurassic. At the boundary between the Middle and the Upper Jurassic a condensed bed occurs.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.