Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The objective of this paper is to describe the effect of cavities on the bearing capacity of two interfering footings based on granular soil using an exclusively experimental approach with a test model designed in the laboratory. The experimental protocol was carried out based on the variation of several parameters such as the spacing (x) (axis to axis) between the footings, and the distance (H) between the footings and cavities and between the cavities axes (L). The results highlight the effect of cavities and the interference of two strip footings on the bearing capacity factor (q) and efficiency factor (EF). Moreover, the results revealed that, in the case wherein the distance between the footings and the cavity is greater than 3, the cavity impact is eliminated.
EN
Based on the response of small-scale model square footing, the present paper shows the results of an experimental bearing capacity of eccentrically loaded square footing, near a slope sand bed. To reach this aim, a steel model square footing of (150 mm × 150 mm) and a varied sand relative density of 30%, 50% and 70% are used. The bearing capacity-settlement relationship of footing located at the edge of a slope and the effect of various parameters such as eccentricity (e) and dimensions report (b/B) were studied. Test results indicate that ultimate bearing capacity decreases with increasing load eccentricity to the core boundary of footing and that as far as the footing is distant from the crest, the bearing capacity increases. Furthermore, the results also prove that there is a clear proportional relation between relative densities –bearing capacity. The model test provides qualitative information on parameters influencing the bearing capacity of square footing. These tests can be used to check the bearing capacity estimated by the conventional methods.
EN
This paper presents the results obtained from an experimental programme and numerical investigations conducted on model tests of strip footing resting on reinforced and unreinforced sand slopes. The study focused on the determination of ultimate bearing capacity of strip footing subjected to eccentric load located either towards or opposite to the slope facing. Strip footing models were tested under different eccentricities of vertical load. The obtained results from tests conducted on unreinforced sand slope showed that the increase in eccentricity of applied load towards the slope facing decreases the ultimate bearing capacity of footing. Predictions of the ultimate bearing capacity obtained by the effective width rule are in good agreement with those proposed from the consideration of total width of footing subjected to eccentric load. The ultimate bearing capacity of an eccentrically loaded footing on a reinforced sand slope can be derived from that of axially loaded footing resting on horizontal sand ground when adopting the effective width rule and the coefficient of reduction due to the slope. When increasing the distance between the footing border to the slope crest, for unreinforced and reinforced ground slope by geogrids, the ultimate bearing capacity of footing is no more affected by the slope ground.
EN
Chemical stabilization of soil is an effective improvement technique because it reduces the ability of the soil to swell. We added different proportions of magnesium chloride to an expansive clay and performed swelling, geotechnical characterization, and mechanical strength tests. The results show that the swelling potential and swelling pressure of the expansive soil were significantly decreased by the addition of magnesium chloride (MgCl2). This treatment also improved the physical and mechanical characteristics and microstructure of the soil. The soil's plastic limit, shrinkage limit, cohesion, and internal friction angle all increased linearly with the addition of the MgCl2 stabilizer. However, we observed that the liquid limit of the soil decreased as the level of magnesium chloride was increased.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.