Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
Maritime transportation is the essence of international economy. Today, around ninety percent of world trade happens by maritime transportation via 50,000 merchant ships. These ships transport various types of cargo and manned by over a million mariners around the world. Majority of these ships are propelled by marine diesel engines, hereafter referred to as main engine, due to its reliability and fuel efficiency. Yet numerous accidents take place due to failure of main engine at sea, the main cause of this being inappropriate maintenance plan. To arrive at an optimal maintenance plan, it is necessary to assess the reliability of the main engine. At present the main engine on board vessels have a Planned Maintenance System (PMS), designed by the ship management companies, considering, advise of the engine manufacturers and/or ship’s chief engineers and masters. Following PMS amounts to carrying out maintenance of a main engine components at specified running hours, without taking into consideration the assessment of the health of the component/s in question. Furthermore, shipping companies have a limited technical ability to record the data properly and use them effectively. In this study, relevant data collected from various sources are analysed to identify the most appropriate failure model representing specific component. The data collected, and model developed will be very useful to assess the reliability of the marine engines and to plan the maintenance activities on-board the ship. This could lead to a decrease in the failure of marine engine, ultimately contributing to the reduction of accidents in the shipping industry.
EN
Safe operation of a merchant vessel is dependent on the reliability of the vessel’s main propulsion engine. Reliability of the main propulsion engine is interdependent on the reliability of several subsystems including lubricating oil system, fuel oil system, cooling water system and scavenge air system. Turbochargers form part of the scavenge sub system and play a vital role in the operation of the main engine. Failure of turbochargers can lead to disastrous consequences and immobilisation of the main engine. Hence due consideration need to be given to the reliability assessment of the scavenge system while assessing the reliability of the main engine. This paper presents integration of Markov model (for constant failure components) and Weibull failure model (for wearing out components) to estimate the reliability of the main propulsion engine. This integrated model will provide more realistic and practical analysis. It will serve as a useful tool to estimate the reliability of the vessel’s main propulsion engine and make efficient and effective maintenance decisions. A case study of turbocharger failure and its impact on the main engine is also discussed.
EN
Effective and efficient maintenance is essential to ensure reliability of a ship's main propulsion system, which in turn is interdependent on the reliability of a number of associated sub- systems. A primary step in evaluating the reliability of the ship's propulsion system will be to evaluate the reliability of each of the sub- system. This paper discusses the methodology adopted to quantify reliability of one of the vital sub-system viz. the lubricating oil system, and development of a model, based on Markov analysis thereof. Having developed the model, means to improve reliability of the system should be considered. The cost of the incremental reliability should be measured to evaluate cost benefits. A maintenance plan can then be devised to achieve the higher level of reliability. Similar approach could be considered to evaluate the reliability of all other sub-systems. This will finally lead to development of a model to evaluate and improve the reliability of the main propulsion system.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.