For many practical weakly nonlinear systems we have their approximated linear model. Its parameters are known or can be determined by one of typical identification procedures. The model obtained using these methods well describes the main features of the system’s dynamics. However, usually it has a low accuracy, which can be a result of the omission of many secondary phenomena in its description. In this paper we propose a new approach to the modelling of weakly nonlinear dynamic systems. In this approach we assume that the model of the weakly nonlinear system is composed of two parts: a linear term and a separate nonlinear correction term. The elements of the correction term are described by fuzzy rules which are designed in such a way as to minimize the inaccuracy resulting from the use of an approximate linear model. This gives us very rich possibilities for exploring and interpreting the operation of the modelled system. An important advantage of the proposed approach is a set of new interpretability criteria of the knowledge represented by fuzzy rules. Taking them into account in the process of automatic model selection allows us to reach a compromise between the accuracy of modelling and the readability of fuzzy rules.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.