Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper approach parameters widely used collision avoidance systems such as the distance at closest point of approach and time to the closest point of approach and less known and used as the distance on course, the distance abeam and any distance and the times intervals to their occurrences are derived, analyzed and graphically interpreted in the combined coordinate system for position and motion. They can be used in collision avoidance systems and for reversed purposes - manoeuvring to required approach parameters, intentional approaches and naval tactical manoeuvres.
EN
Differences of orthodromic distances calculated on the sphere in comparison to the spheroid are numerically analyzed in the full range of departure point latitudes, courses over the ground and orthodromic distances for the global and limited range of latitudes. Optimum solutions for the radii of the sphere are provided.
EN
Solutions of such navigational problems as an orthodromic navigation (courses, distances and intermediate points), maximum latitude and a composite navigation with limited latitude as well as, for comparison, a loxodromic navigation (courses, distances) without any simplifications for a sphere, by an application of solutions of the inverse geodetic problem are presented. An exemplary rigorous, rapid, noniterative solution of the inverse geodetic problem according to Sodano, for any length of geodesic, is attached.
4
Content available remote Solutions of Direct Geodetic Problem in Navigational Applications
EN
Solutions of such navigational problems as positions from ranges, bearings and courses without any simplifications for a plane or a sphere, by an application of solutions of direct geodetic problem are pre-sented. The rigorous, rapid, noniterative solution of the direct geodetic problem according to Sodano, for any length of geodesics, is attached.
5
Content available Log signals simulation
EN
Log simulators (log-a device for measuring speed in marine navigation) should possess a pulse output - a given number of pulses per nautical mile. These are digital to frequency dividers, which are widely known, but in this applications they are required to achieve rather special features. Due to a hyperbolic relationship between the pulse repetition period and speed they should be able to generate a wide range of periods (e.g. 0.09 s - 360 s and further und to ∞ with resolution up to 9x10 -5 s) and should achieve a fast and undisturbed change of period at simulated speed manoeuvres and simulated speed errors. In this paper equations for design parameters are derived and the solution of period change problem is provided.
PL
Symulatory logów ( urządzeń mierzących prędkość w nawigacji morskiej ), które używane są do testowania oraz szkolenia operatorów radarów i systemów antykolizyjnych, powinny posiadać również wyjście impulsowe, które w logu rzeczywistym pochodzi z licznika przebytej drogi, w postaci zadanej liczby impulsów na mile morską. Urządzenie takie to przetwornik cyfrowo-częstotliwościowy w formie programowanego cyfrowo dzielnika częstotliwości. Przetworniki takie są powszechnie znane jednak w tym zastosowaniu spełniać muszą dość specjalne wymagania. Ze względu na hiperboliczną zależność okresu impulsów od symulowanej prędkości muszą generować okresy powtarzania impulsów w szerokim zakresie (np. 0.09 s - 360 s i dalej do ∞ z rozdzielczością do 9x10 -5 s) oraz zapewniać szybką i niezakłóconą zmianę okresu przy manewrach prędkością symulowaną oraz symulacji błędów tej prędkości. W artykule wprowadzono zależności na parametry projektowe symulatora oraz przedstawiono sposób korygowania okresu powtarzania impulsów.
EN
Formulae for calculation of own speed and course to achieve a required distance, time and bearings in respect to a selected object are derived and their graphical interpretation is provided.
EN
Formulae for calculation of own speed and course to achieve a required distance and time abeam in respect to a selected object are derived and their graphical interpretation is provided.
EN
The predicted object distance on course Dc and the time interval to its occurrence Tc are sometimes used additional criteria for collision threat. They are calculated in some ARPAs as BCD - the bow crossing distance and BCT - the bow crossing time. The scope of this paper is aimed at the problem which although it can be and it is connected with collision avoidance manoeuvres, but it is rather reversed and can be applied for intentional approaches or in naval tactical manoeuvres - what own speed and/or course manoeuvre should be undertaken to achieve the required distance on course Dc and /or time to this distance Tc?
EN
The predicted object CPA (Closest Point of Approach) distance DCPA and, to a lesser extent, the time interval to its occurrence TCPA are well established criteria for collision threat. They are approach parameters widely used as well in collision avoidance systems featuring computer - aided tracking (ARPAs) as in manual radar plots. The scope of this paper is aimed at the problem which although it can be and it is connected with collision avoidance manoeuvres, but it is rather reversed and can be applied for intentional approaches or in naval tactical manoeuvres - what own speed and/or course manoeuvre should be undertaken to achieve the required CPA distance and/or time?
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.