Closely spaced CTDO profiling on the pathway of saltwater flow in the southeastern Baltic Sea in August and December 2019 revealed low oxygen intermediate layers-plumes with dissolved oxygen concentration (DOC) less than 2 mg/l under the upper boundary of permanent halocline. At the same time, DOC in the underlying layers was higher and reached 5.0–5.3 mg/l. In order to test the hypotheses about the origin of the intermediate hypoxic plumes, numerical hydrodynamic modelling was performed for time intervals including the measurement periods. The model was validated against bottom current velocity instrumental measurements by a TCM (Tilt Current Meter) moored on the track of the CTDO profiling. Numerical experiments with Lagrangian particles of neutral buoyancy coupled with the operational circulation model showed that sub-halocline hypoxic intermediate layers in the southern part of the Eastern Gotland Basin and in the Gdańsk Basin could be formed as a result of intrusion into the underlying bottom layer of denser, moderately oxygenated water from the Słupsk Furrow, which replaced the old anoxic and hypoxic water of Gotland and Gdańsk origin. It is assumed that cyclonic eddy activity above the saltwater flow along sloping bottom caused fragmentation of the hypoxic intermediate layer into separate plumes. The hypoxic intermediate layers in the Słupsk Furrow, in accordance with the results of monitoring measurements and modelling the motion of particles of neutral buoyancy, could be formed in the Bornholm Basin and moved eastward over the Słupsk Sill.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.