Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Two Kinds of Invariance of Full Conditional Probabilities
EN
Let G be a group acting on Ω and F a G-invariant algebra of subsets of Ω. A full conditional probability on F is a function P:F×(F∖{∅})→[0,1] satisfying the obvious axioms (with only finite additivity). It is weakly G-invariant provided that P(gA|gB)=P(A|B) for all g∈G and A,B∈F, and strongly G-invariant provided that P(gA|B)=P(A|B) whenever g∈G and A∪gA⊆B. Armstrong (1989) claimed that weak and strong invariance are equivalent, but we shall show that this is false and that weak G-invariance implies strong G-invariance for every Ω, F and P as above if and only if G has no non-trivial left-orderable quotient. In particular, G=Z provides a counterexample to Armstrong's claim.
EN
Let Ω be a countable infinite product Ω1N of copies of the same probability space Ω1, and let {Ξn} be the sequence of the coordinate projection functions from Ω to~Ω1. Let Ψ be a possibly nonmeasurable function from Ω1 to R, and let Xn(ω)=Ψ(Ξn(ω)). Then we can think of {Xn} as a sequence of independent but possibly nonmeasurable random variables on Ω. Let Sn=X1+⋯+Xn. By the ordinary Strong Law of Large Numbers, we almost surely have E∗[X1]≤lim infSn/n≤lim supSn/n≤E∗[X1], where E∗ and E∗ are the lower and upper expectations. We ask if anything more precise can be said about the limit points of Sn/n in the nontrivial case where E∗[X1]1], and obtain several negative answers. For instance, the set of points of Ω where Sn/n converges is maximally nonmeasurable: it has inner measure zero and outer measure one.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.