E-commerce is a very popular method that let consumers to purchase goods and services. The ability to purchase items online has increased the need for effective recommendation systems. Such recommendations relate usually to products in which the customer may be interested. However, there are wider opportunities to tailor e-commerce to individual customer needs and behaviour. In this paper the architecture of the ecommerce platform (named AIM2), which allows to provide a dedicated interface to selected user groups is discussed. A key component of the platform is the module responsible for dividing customers into groups, using selected clustering methods. Each of the implemented methods can be parameterised to adapt the customer segmentation to the requirements of the e-commerce owner. This article describes the results of an analysis of the impact of selected methods and parameters on clustering results. Moreover, it identifies key metrics that should be considered when selecting clustering conditions during the implementation of the platform. Finally, the main results of the pilot implementation of AIM2 are presented to assess the effectiveness of the multivariant user interface.
The new vehicle scanning system Sowa has been developed in the National Centre for Nuclear Research. This innovative device is equipped with a 300 kV X-ray tube, U-shape imaging detector line, transport system, and fully shielded container. Sowa allows for a detailed inspection of the car and the detection of illegal transported items. This article presents the design, applied solutions, and achieved results of Sowa scanning system.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.