Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The article presents a comparative analysis of the yarns used for manufacturing hernia meshes. For the analysis, two different linear masses, 46 dtex and 72 dtex, of transparent and dyed yarns were used; the dye used in the yarns was adequate for their intended use. The DSC tests showed the influence of thermal treatment on the change of thermal properties of the yarns. At the same time, it was proved that the aforementioned treatment had a bearing on the changes of crystallinity degree. All types of yarns were also subjected to physicochemical tests required for all the materials used for the production of hernia meshes.
EN
The study was conducted in order to determine the biocomatibility of polimer mesh based on BOC and enriched with HAp or TCP coverd by PCL sub-micrometric fibres. Human osteoblast cell line NHOst was cultured in standard conditions on disk-shaped polymer samples. Interactions between materials and cells were examined through microscopic observation of cells' adhesion and morphology, and tests of viability/proliferation and cytotoxicity. The study proved the biocompatibility of all examined materials, though the surface of TCP enriched polymer didn't promote the adhesion of cells.
EN
Hybrid biomaterials due to their unique structure may become an alternative for many popular composite and nanocomposite materials. Multilevel modification of their matrix manifesting itself in the presence of particles of different sizes i.e., micrometric, submicrometric and nanometric together with the variety of shapes of a modyfing phase (nanometric fibres, submicron particles, coated nanoparticles) and its different chemical character make the hybrid materials similar to natural tissue. Bone tissue structure is particulary close to this model in which collagen fibres and hydroxyapatite particles and nanoparticles have not only different form but first of all they play different role in the tissue which depends on their chemical nature. In the biomedical engineering syntetic hybride biomaterials are usually produced using resorbable and degradable polymer matrices and inorganic filers (ceramic bioactive particles; HAp, TCP, SiO2) or organic filers (collagen, polysaccharides e.g. alginate fibres). The main function of the modyfing phase is inprovement of the polymer matrix leading to bioactive, stronger material showing high biofunctionality. Production of hybrid materials is based mainly on experimental works, which is related to the presence in their matrix few phases with different properties which may interact. Hybrid materials do not follow the rule of mixtures thus it is difficult to predict behaviour of a material in which co-exis different chemical and phisical phases. In the work hybrid composite foils were produced in which modyfing phase consisted in; nanocomposite calcium alginate fibres modyfied with ceramic nanoparticles; HAp (CAH fibres), TCP (CAT fibres), SiO2 (CAS fibres) and MMT (CAM fibres). Short fibres were subjected to additional size reduction in vibration ball mill resultiong in submicron and nanometric phases. Size of the particels after grinding was determined by screening analysis and DLS method (for particels smaller than 500 nm). It was observed than the population of short fibres consist in three fractions i.e.; micrometric (~2μm, 50 wt.%), submicrometric (500–800 nm, 40 wt.%) and nanometric ( below 500 nm, 10 wt.%). The fibres and products of their grinding were homogenised in P(L/ DL)LA polymer solution (poly-L/DL-lactide, Purarorb 80, Purac Germany). A hybride material in the form of thin foils containing 2 wt.% of a modyfing phase were subjected to durability tests consisting in incubation in distilled water (30 days/37C). Monitoring of the medium pH and conductivity did not show changes related to harmful products of their decomposition. Osteoblast-like cells from MG-63 line contacted with the surface of the materials showed high viability (MMT test) comparable with the reference material (TCPS). High degree of adherence of the cells to the materal surface (CV test) testifies of potential abilities of the material stimulating proliferation of bone tissue cells. The highes rate of dynamic growth (increase of the cells number after 7 days of incubation) was observed for the material which was modified with CAS fibres and products of their grinding. The performed investigations have a preliminary character. Their results testify for potential osteoconductive or osteoinductive abilities of hybride materials basing on P(L/DL)LA and alginate nanocomposite fibres.
PL
Przedmiotem pracy są nanokompozytowe materiały membranowe wytworzone na bazie resorobalnych włókien z polialkoholu winylowego modyfikowanego nanocząstkami ceramicznymi HAp lub SiO2. Materiały scharakteryzowano pod względem fizykochemicznym (chropowatość, zwilżalność), mikrostrukturalnym (wielkość porów, porowatość), strukturalnym (DSC). Uwzględniając aplikacje materiału zbadano również kinetykę uwalniania bioaktywnych nanocząstek które stymulować mogą nukleację apatytu na powierzchni membrany. Wykazano ze dodatek nanokompozytowych włókien wpływa na obniżenie hydrofobowości powierzchni i wzrost jej chropowatości. Zmiany ilościowe tych parametrów powierzchni zależą od rodzaju wprowadzonej fazy nanokompozytowej. Obecność włókien PVA/SiO2 i PVA/HAp zmienia mikrostrukturę a także strukturę matrycy polimeru.
EN
Aim of the work is investigations on nanocomposite membrane materials based on resorbable fibres of polyvinyl alcohol modified with ceramic nanoparticles of HAp or SiO2. The materials were characterised in terms of their physicochemical properties (roughness, wettability), microstructure (porosity, pore size) and structure (DSC). Taking into consideration a possible application of the materials the kinetics of release of bioactive particles which may stimulate nucleation of apatite on a membrane surface was investigated. It was shown, that addition of the nanocomposite fibres lead to decrease of hydrophobicity of the surface and increase of its roughness. Quantitative changes of these parameters depend on the type of the introduced nanocomposite phase. The presence of PVA/SiO2and PVA/HAp fibres changes microstructure of the composite and structure of the polymer matrix PCL.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.