PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrazinium 5-Aminotetrazolate: an Insensitive Energetic Material Containing 83.72% Nitrogen

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydrazinium 5-aminotetrazolate (2) was synthesized via two facile routes. Both the reaction of 5-amino-1H-tetrazole (1) with hydrazine hydrate in aqueous solution and the reaction of 1 with diluted hydrazine solution in THF yield 2 in excellent purities and yields. 2 was characterized comprehensively by X-ray diffraction, IR, Raman and multinuclear NMR spectroscopy, mass spectrometry, elemental analysis and differential scanning calorimetry. The heat of formation was calculated (CMS-4M) using the atomization method to be 373 kJ mol-1. With this value and the X-ray density several detonation parameter (heats of explosion, detonation pressure, detonation velocity, explosion temperature) were calculated with the EXPLO5 computer software. An incredible high value (9516 m s-1) was obtained for the detonation velocity. Therefore experimentally tests to determine the velocity of detonation were performed. In addition the use of 2 in solid propellant compositions was calculated and tested in combination with oxidizers, e.g. ammonium dinitramide. Lastly the sensitivities towards impact, friction and electrostatic discharge were determined with the BAM drophammer, friction tester and an ESD machine.
Rocznik
Strony
3--18
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
autor
Bibliografia
  • [1] (a) Klapötke T.M., Stierstorfer J., Nitration Products of 5-Amino-1H-Tetrazole and Methyl-5-Amino-1H-Tetrazoles - Structures and Properties of Promising Energetic Materials, Helv. Chim. Acta, 2007, 90, 2132-2150; (b) Klapötke T.M., Steemann F.X., Suceska M., Computed Thermodynamic and Explosive Properties of 1-Azido-2-Nitro-2-Azapropane (ANAP), Propellants Explos., Pyrotech., 2008, 33, 213-218; (c) Crawford M.-J., Evers J., Göbel M., Klapötke T.M., Mayer P., Oehlinger G., Welch J.M., γ-FOX 7: Structure of a High Energy Density Material Immediately Prior to Decomposition, Propellants, Explos., Pyrotech., 2007, 32, 478-495; (d) Karaghiosoff K., Klapötke T.M., Mayer P., Miró Sabaté C., Penger A., Welch J.M., Salts of Methylated 5-Aminotetrazoles with Energetic Anions, Inorg. Chem., 2008,47(3), 1007-1019; (e) Klapötke T.M., Stierstorfer J., Synthesis and Characterization of the Energetic Compounds Aminoguanidinium-, Triaminoguanidinium- and zidoformamidinium Perchlorate, Centr. Europ. J. Energ. Mater., 2008, 5(1), 13-30; (f) Klapötke T.M., Miró Sabaté C., Nitrogen-Rich Tetrazolium Azotetrazolate salts: A New Family of Insensitive Energetiv Materials, Chem. Mater., 2008, 20(5), 1750-1763; (g) Klapötke T.M., Stierstorfer J., Triaminoguanidinium Dinitramide-Calculations, Synthesis and Characterization of Promising Energetic Materials, Phys. Chem. Chem. Phys., 2008, 10, 4340-4346; (h) Stierstorfer J., Klapötke T.M., Hammerl A., Chapman R.D., 5-Azido-1H-Tetrazole – Improved Synthesis, Crystal Structure and Sensitivity Data, Z. Anorg. Allg. Chem., 2008, 634, 1051-1057; (i) Klapötke T.M., Stierstorfer J., Wallek A.U., Nitrogen-Rich Salts of 1-Methyl-5-Nitriminotetrazolate: an Auspicious Class of Thermally Stable Energetic Materials, Chem. Mater., 2008, 20, 4519-4530; (j) Darwich C., Klapötke T.M., Miró Sabaté C., 1,2,4-Triazolium-Cation-Based Energetic Salts, Chem. Eur. J., 2008, 14, 5756-5771.
  • [2] (a) Klapötke T.M., New Nitrogen-Rich High Explosives, in: Structure and Bonding, Vol. 125/2007: High Energy Density Compounds, T.M. Klapötke (vol. editor), Mingos D.M.P. (series editor), Springer, Berlin/Heidelberg 2007, 85; (b) Klapötke T.M., Tetrazole for the Safe Detonation, Nachrichten aus der Chemie, 2008, 56, 645-648.
  • [3] Singh R.P., Gao H., Meshri D.T., Shreeve J.M., Nitrogen-Rich Heterocycles, in: Structure and Bonding, Vol. 125/2007: High Energy Density Compounds, Klapötke T.M. (vol. editor), Mingos D.M.P. (series editor), Springer, Berlin/Heidelberg 2007, 35.
  • [4] Ernst V., Klapötke T.M., Stierstorfer J., Alkali Salts of 5-Aminotetrazole: Structures and Properties, Z. Anorg. Allg. Chem., 2007, 633, 879-887.
  • [5] Klapötke T.M., Stein M., Stierstorfer J., Salts of 1H-Tetrazole, Z. Anorg. Allg. Chem., 2008, in press.
  • [6] (a) Hiskey M., Hammerl A., Holl G., Klapötke T.M., Polborn K., Stierstorfer J., Weigand J.J., Azidoformamidinium and Guanidinium 5,5′-Azotetrazolate Salts, Chem. Mater., 2005, 17, 3784-3793; (b) Hammerl A., Holl G., Klapötke T. M., Mayer P., Nöth H., Piotrowski H., Warchhold M., Salts of 5,5’-Azotetrazolate, Eur. J. Inorg. Chem., 2002, 4, 834-845.
  • [7] Klapötke T.M., Miró Sabaté C., Bistetrazoles: Nitrogen-Rich, High-Performing, Insensitive Energetic Compounds, Chem. Mater., 2008, 20(11), 3629-3637.
  • [8] Klapötke T.M., Mayer P., Stierstorfer J., Weigand J.J., Bistetrazolylamines -Synthesis and Characterization, J. Mat. Chem., 2008, accepted.
  • [9] Klapötke T.M., Stierstorfer J., Recent Developments on Energetic Materials based on 5-Aminotetrazole, New Trends in Research of Energetic Materials, Proc. of the 11th Seminar, Pardubice, Czech Republic, 2008, 1, 278-298.
  • [10] Klapötke T.M., Stierstorfer J., The CN7 Anion. Gordon Research Conference, 2008, Tilton, NH, USA.
  • [11] CrysAlis CCD, Oxford Diffraction Ltd., Version 1.171.27p5 beta (release 01-04-2005 CrysAlis171.NET), 2005.
  • [12] CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.27p5 beta (release 01-04-2005 CrysAlis171.NET), 2005.
  • [13] Altomare A., Cascarano G., Giacovazzo C., Guagliardi A., Completion and Refinement of Crystal Structures with SIR92, J. Appl. Cryst., 1993, 26, 343-350.
  • [14] Sheldrick G.M., SHELXL-97, Program for the Refinement of Crystal Structures. University of Göttingen, Germany, 1997.
  • [15] Spek A.L., PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 1999.
  • [16] Farrugia L.J., Wingx Suite for Small Molecule Single Crystal Crystallography, J. Appl. Cryst., 1999, 32, 837-838.
  • [17] SCALE3 ABSPACK - An Oxford Diffraction program (1.0.4,gui:1.0.3) (C) 2005, Oxford Diffraction Ltd.
  • [18] Hall S.R., Allen F.H., Brown I. D., The Crystallographic Information File (CIF): A New Standard Archive File for Crystallography, Acta Crystallogr. A, 1991, 47, 655-685.
  • [19] Crystallographic data for the structure(s) have been deposited with the Cambridge Crystallographic Data Centre. Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: int.code_(1223)336-033; e-mail for inquiry: fileserv@ccdc.cam.ac.uk; e-mail for deposition: deposit-@ccdc.cam.ac.uk)
  • [20] Bryden J.H., The Crystal Structure of the Hydrazine Salt of 5-Aminotetrazole, Acta Cryst., 1958, 11, 31-37.
  • [21] Bracuti A.J., Troup J.M., Extine M.W.. Structure of Bis(1,2,3-riaminoguanidinium) Bis(5-Aminotetrazolate) Monohydrate, Acta Crystallogr. C, 1986, 42, 505-506.
  • [22] Bray D.D., White J.G., Refinement of the Structure of 5-Aminotetrazole Monohydrate. Acta Crystallogr. B, 1979, 35, 3089-3091.
  • [23] Hammerl A., Holl G., Kaiser M., Klapötke T.M., Piotrowski H., Nitrogen Rich Materials: Salts of N,N´-Bistetrazolatohydrazine, Z. Anorg. Allg. Chem., 2003, 629, 2117-2121.
  • [24] Hammerl A., Holl G., Kaiser M., Klapötke T.M., Nöth H., Ticmanis U., Warchhold M., [N2H5]+2[N4C-N:N-CN4]2- : A New High Nitrogen High Energetic Material, Inorg. Chem., 2001, 40, 3570-3575.
  • [25] Ochterski J.W., Petersson G.A., Montgomery J.A. Jr., A Complete Basisi Set Model Chemistry. V. Extensions to Six or More Heavy Atoms, J. Chem. Phys., 1996, 104, 2598-2619.
  • [26] Montgomery J.A. Jr., Frisch M.J., Ochterski J.W., Petersson G.A., A Complete Basisi Set Model Chemistry. VII. Use of the Minimum Population Localization Method, J. Chem. Phys., 2000, 112, 6532-6542.
  • [27] Frisch M.J. et al., Gaussian 03, Revision B04, Gaussian Inc., Wallingford, CT, 2004.
  • [28] Curtiss L.A., Raghavachari K., Redfern P.C., Pople J.A., Assesment of Gaussian-2 and Density Functional Theories for the Computation of Enthalpies of Formation, J. Chem. Phys., 1997, 106(3), 1063-1079.
  • [29] Byrd E.F.C., Rice B.M., Improved Prediction of Heats of Formation of Energetic Materials Using Quantum Mechanical Calculations, J. Phys. Chem. A, 2006, 110(3), 1005-1013.
  • [30] Rice B.M., Pai S.V., Hare J., Predicting Heats of Formation of Energetic Materials Using Quantum Mechanical Calculations, Combustion and Flame 1999, 118(3), 445-458.
  • [31] Jenkins H.D.B., Roobottom H.K., Passmore J., Glasser L., Relationships Among Ionic Lattice Energies, Molecular (Formula Unit) Volumes and Thermochemical Radii. Inorg. Chem., 1999, 38(16), 3609-3620.
  • [32] Jenkins H.D.B., Tudela D., Glasser L., Lattice Potential Energy Estimation for Complex Ionic Salts from Density Measurements, ibid., 2002, 41(9), 2364-2367.
  • [33] Jenkins H.D.B., Glasser L., Ionic Hydrates MpXq.nH2O: Lattice Energy and Standard Enthalpy of formation Estimation, ibid., 2002, 41(17), 4378-4388.
  • [34] Sućeska M., EXPLO5 program, Zagreb, Croatia, 2005.
  • [35] Sućeska M., Calculation of Detonation Parameters by EXPLO5 Computer Program, Materials Science Forum, 2004, 465-466, 325-330.
  • [36] Sućeska M., Calculation of Detonation Properties of C-H-N-O Explosives, Propellants, Explos., Pyrotech., 1991, 16, 197-202.
  • [37] Sućeska M., Evaluation of Detonation Energy from EXPLO5 Computer Code Results, ibid., 1999, 24, 280-285.
  • [38] Hobbs M.L., Baer M.R., Calibration of the BKW-EOS with a Large Product Species Data Base and Measured C-J Properties, Proc. of the 10th Symp. (International) on Detonation, ONR 33395-12, Boston, MA, July 12-16, 1993, p. 409.
  • [39] Doherty R.M., Novel Energetic Materials for Emerging Needs, 9th -IWCP on Novel Energetic Materials and Applications, Lerici (Pisa), Italy, September 14-18, 2003.
  • [40] The Chemistry of Explosives, 2nd edn., J. Akhavan, RSC Press (Cambridge) 2004.
  • [41] http://www.linseis.com
  • [42] http://www.perkin-elmer.com
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0035-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.