PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficiency optimization of a closed indirectly fired gas turbine cycle working under two variable-temperature heat reservoirs

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Indirectly or externally fired gas turbines (IFGT or EFGT) are interesting technologies under development for small and medium scale combined heat and power (CHP) supplies in combination with micro gas turbine technologies. The emphasis is primarily on the utilization of the waste heat from the turbine in a recuperative process and the possibility of burning biomass even "dirty" fuel by employing a high temperature heat exchanger (HTHE) to avoid the combustion gases passing through the turbine. In this paper, finite time thermodynamics is employed in the performance analysis of a class of irreversible closed IFGT cycles coupled to variable temperature heat reservoirs. Based on the derived analytical formulae for the dimensionless power output and efficiency, the efficiency optimization is performed in two aspects. The first is to search the optimum heat conductance distribution corresponding to the efficiency optimization among the hot- and cold-side of the heat reservoirs and the high temperature heat exchangers for a fixed total heat exchanger inventory. The second is to search the optimum thermal capacitance rate matching corresponding to the maximum efficiency between the working fluid and the high-temperature heat reservoir for a fixed ratio of the thermal capacitance rates of the two heat reservoirs. The influences of some design parameters on the optimum heat conductance distribution, the optimum thermal capacitance rate matching and the maximum power output, which include the inlet temperature ratio of the two heat reservoirs, the efficiencies of the compressor and the gas turbine, and the total pressure recovery coefficient, are provided by numerical examples. The power plant configuration under optimized operation condition leads to a smaller size, including the compressor, turbine, two heat reservoirs and the HTHE.
Twórcy
autor
autor
  • Department of Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
Bibliografia
  • [1] Novikov I.I.: The efficiency of atomic power stations. Journal of Nuclear Energy 2( 1957), 7, 125–128.
  • [2] Chambadal P.: Nuclear Power. Armand Colin , Paris 1957.
  • [3] Curzon F.L., Ahlborn B.: Efficiency of a Carnot engine at maximum power output. American Journal of Physics 43(1975), 1, 22–24.
  • [4] Bejan A.: Entropy Generation Minimization. CRC Press, New York 1996.
  • [5] Chen L., Sun F.: Advances in Finite-time Thermodynamics. Nova Science, New York 2004.
  • [6] Martinot E., Dienst C., Weiliang L.: Renewable energy futures: Targets, scenarios, and pathways. Annual Review of Environment and Resources 32(2007), 1, 205–239.
  • [7] Athena P., Simon S., Paul U.: Project ARBRE: Lessons for bio-energy developers and policy-makers. Energy Policy 36(2008), 6, 2044–2050.
  • [8] Salamon P., Hoffmann K.H., Schubert S.: What conditions make minimum entropy production equivalent to maximum power production? Journal of Nonequilibrium Thermodynamics 26(2001), 1, 73–83.
  • [9] Klara J.M., Izsak M.S., Wherley M.R.: Advanced power generation: The potential of indirectly-fired combined cycle. ASME Paper 95-GT-261 (1995).
  • [10] Nelson J.O.: High pressure ceramic air heater for indirectly-fired gas turbine applications. Joint Contractors Review Meeting, DOE-METC, 1993
  • [11] Solomon P.R., Serio M.A., Cosgrove J.E.: A coal-fired heat exchanger for an externally fired gas turbine. Journal of Engineering for Gas Turbines and Power 118(1996), 1, 23–31.
  • [12] DiCarlo J.A., van Roode M.: Ceramic composite development for gas turbine engine hot section components. In: Proceedings of ASME Turbo Expo 2006: Power for Land, Sea and Air, Barcelona 2006.
  • [13] Schulte-Fischedick J., Dreissigacker V., Tamme R.: An innovative ceramic high temperature plate-fin heat exchanger for EFCC processes. Applied Thermal Engineering 27(2007), 8-9, 1285–1294.
  • [14] Aquaro D., Piccitto U., Pieve M.: Feasibility analysis of a high temperature heat exchanger for combined cycles. International Journal of Heat and Technology 21(2003), 2, 167–174.
  • [15] Yan J., Eidensten L.: Status and perspective of externally fired gas turbines. Journal of Propulsion and Power 16(2000), 4, 572–576.
  • [16] Bram S., de Ruyck J., Novak-Zdravkovic A.: Status of external firing of biomass in gas turbines. In: Proceedings of the Institution of Mechanical Engineers, Part A. Journal of Power and Energy 219(2005), 2, 137–145.
  • [17] Martin K., Ulf H.: The externally-fired gas-turbine (EFGT-Cycle) for decentralized use of biomass. Applied Energy 84(2007), 7-8, 795–805.
  • [18] Daniele C., Paolo D., Giorgio C.: Performance evaluation of small size externally fired gas turbine(EFGT) power plants integrated with direct biomass dryers. Energy 31(2006), 10-11, 1459–1471.
  • [19] LaHaye P.G., M.R. Bary: Externally fired combustion cycle (EFCC): A DOE clean coal V project: Effective means of rejuvenation for older coal-fired stations. ASME Paper 94-GT-483 (1994).
  • [20] Consonni S., Macchi E., Farina F.: Externally fired combined cycles (EFCC). Part A: thermodynamics and technological issues. ASME Paper 96-GT-92 (1996).
  • [21] Consonni S., Macchi E.: Externally fired combined cycles (EFCC). Part B: alternative configurations and cost projections. ASME Paper 96-GT-93 (1996).
  • [22] Eidensten L., Yan J., Svedberg G.: Biomass externally fired gas turbine cogeneration. Journal of Engineering for Gas Turbines and Power 118(1996), 3, 604–609.
  • [23] Ferreira S.B., Pilidis P.: Comparison of externally fired and internal combustion gas turbines using biomass fuel. Journal of Energy Resources 123(2001), 4, 291–296.
  • [24] Koetzier H., Knoef H.: Technical and economic feasibility of an indirectly fired gas turbine for rural electricity production from biomass. Report No. 9712, EWAB Project, 1997.
  • [25] Evans R.L., Zaradic A.M.: Optimization of a wood-waste-fuelled, indirectly fired gas turbine cogeneration plant. Bioresource Technology 57(1996), 2, 117–126.
  • [26] Bejan A., Tsatsaronis G., Moran M.: Thermal Design & Optimization. Wiley, New York 1996.
  • [27] Ferreira S.B., Pilidis P.: Comparison of externally fired and internal combustion gas turbines using biomass fuel. ASME Journal of Energy Resources Technology 123(2001), 4, 291–296.
  • [28] Chen L., Sun F., Wu C.: Theoretical analysis of the performance of a regenerated closed Brayton cycle with internal irreversibilities. Energy Conversion and Management 18(1997), 9, 871–877.
  • [29] Chen L., Ni N., Cheng G.: FTT performance of a closed regenerated Brayton cycle coupled to variable temperature heat reservoirs. In: Proc. Int. Conf. Marine Engng. 3.7.1–3.7.7, Shanghai, Nov. 4–8, 1996.
  • [30] Chen L., Ni N., Cheng G.: Performance analysis for a real closed regenerated Brayton cycle via methods of finite time thermodynamics. International Journal of Ambient Energy 20(1999), 2, 95–104.
  • [31] Roco J., Veleasco S., Medina A.: Optimum performance of a regenerative Brayton thermal cycle. Journal of Applied Physics 82(1997), 6, 2735–2741.
  • [32] Chen L., Sun F., Wu C.: Power optimization of a regenerated closed variable-temperature heat reservoir Brayton cycle. International Journal of Sustainable Energy 26(2007), 1, 1–17.
  • [33] Chen L., Wang W., Sun F., Wu C.: Closed intercooled regenerator Brayton cycle with constant-temperature heat reservoirs. Applied Energy 77(2004), 4, 429–446.
  • [34] Chen L., Wang W., Sun F., Wu C.: Performance analysis for an irreversible closed variable-temperature heat reservoir intercooled regenerated Brayton cycle. Energy Conversion and Management 44(2003), 17, 2713–2732.
  • [35] Chen L., Wang W., Sun F.: Power density analysis and optimization of an irreversible closed intercooled regenerated Brayton cycle. Mathematical and Computer Modelling 48(2008), 3-4, 527–540.
  • [36] Wang W., Chen L., Sun F., Wu C.: Optimal heat conductance distribution and optimal intercooling pressure ratio for power optimisation of irreversible closed intercooled regenerated Brayton cycle. Journal of the Energy Institute 79(2006), 2, 116–119.
  • [37] Wang W., Chen L., Sun F., Wu C.: Power optimization of an irreversible closed intercooled regenerated Brayton cycle coupled to variable-temperature heat reservoirs. Applied Thermal Engineering 25(2005), 8-9, 1097–1113.
  • [38] Wang W., Chen L., Sun F., Wu C.: Performance analysis for an irreversible variable temperature heat reservoir closed intercooled regenerated Brayton cycle. Energy Conversion and Management 44(2003), 17, 2713–2732.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3205-2384
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.