PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Flow controlled critical heat flux: developments in annular flow modelling

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Critical heat flux at higher steam qualities is accepted to correspond to the dry out of the wall film in the annular flow pattern where the film is depleted by evaporation and entrainment of liquid into drops and augmented by redeposition of drops. Since the first complete model for annular flow there have been many developments in the understanding and modelling of these flows, which are reviewed here. Latest developments on the rates of entrainment and deposition are described as well as the application of the model to multicomponent mixtures. Another area that has received attention is the start of annular flow and the boundary with churn flow. Applications for more complex geometies, namely annuli, rod bundles, horizontal pipes, Venturis and to the serpentine tubing of fired heaters have been developed and are presented.
Rocznik
Strony
3--22
Opis fizyczny
Wykr., tab., wz.,Bibliogr. 52 poz.,
Twórcy
autor
  • University of Nottingham, School of Chemical, Environmental and Mining Engineering, University Park, Nottingham NG7 2RD, United Kingdom
Bibliografia
  • [1] Bennett A.W., Hewitt G.F., Kearsey H.A., Keeys R.K.F., Stinchcombe R.A.: Measurement of liquid film flow rates at 1000 psia in upward steam water flow in a vertical heated tube, UKAEA Report AERE R5809, 1969.
  • [2] Andreussi P.: Annular flow, Notes of a course on Physical Modelling of Gas Liquid Flows, Pisa, 1990.
  • [3] Laforgia A., Lao L., Lawrence C.J., Hewitt G.F.: Modelling of vertical annular and wispy-annular flow, 3rd Int. Symp. Two-Phase Flow Modelling and Exper., Pisa, 2004.
  • [4] Whalley P.B., Hutchinson P., Hewitt G.F.: The calculation of critical heat flux for forced convection boiling, 5th Int. Heat Trans. Conf., Tokyo, paper B6.11, 1974.
  • [5] Hewitt G.F., Govan A.H.: Phenomenological modelling of non-equilibrium flow with phase change, Int. J. Heat Mass Trans., Vol. 32, 1990, 229-242.
  • [6] Wallis G.B.: Annular two-phase flow. I. Basic aspects, J. Basic Eng., Vol. 92, 1970, 59-72.
  • [7] Asali J.C., Hanratty T.J., Andreussi P.: Interfacial drag and film height for vertical annular flow, AIChE J, Vol. 31, 1985, 895-902.
  • [8] Arnbrosini W., Andreussi P., Azzopardi B.J.: A physically based correlation for drop size in annular flow, Int. J. Multiphase Flow, Vol. 17, 1991, 497-507.
  • [9] Holt A.J., Azzopardi B.J., Biddulph M.W.: Calculation of two-phase pressure drop for vertical upflow in narrow passages by means of a flow pattern specific model, Chem. Eng. Res. Des., Vol. 77A, 1999, 7-15.
  • [10] Bennett A.W., Hewitt G.F., Kearsey H.A., Keeys R.K.F.: Heat transfer to steam-water flowing in uniformly heated tubes in which the critical heat flux has been exceeded, UKAEA Report AERE R5373, 1967.
  • [11] Whalley P.B., Azzopardi B.J., Hewitt G.F., Owen R.G.: A physical model for two phase flows with thermodynamic and hydrodynamic nonequilibrium, 7th Int. Heat Transfer Conf., Munich, 1982.
  • [12] Azzopardi B.J.: Prediction of dry out and post-burnout heat transfer with axially non-uniform heat input by means of an annular flow model, Nucl. Eng. Des., Vol. 163, 1996, 51-57.
  • [13] Barbosa jr J.R., Hewitt G.F.: Forced convective boiling of binary mixtures in annular flow. Part I: Liquid phase mass transport, Int. J. Heat Mass Transfer, Vol. 44, 2001, 1465-1474.
  • [14] Barbosa jr J.R., Hewitt G.F.: Forced convective boiling of binary mixtures in annular flow. Part II: Heat and mass transfer, Int. J. Heat Mass Transfer, Vol. 44, 2001, 1475-1484.
  • [15] Barbosa jr J.R., Hewitt G.F., König G., Richardson S.M.: Liquid entrainment, droplet concentration and pressure gradient at the onset of annular flow in a vertical pipe, Int. J. Multiphase Flow, Vol. 28, 2002, 943-961.
  • [16] Azzopardi B.J., Wren E.: What is entrainment in vertical two-phase churn flow?, Int. J. Multiphase Flow, Vol. 30, 2004, 89-103.
  • [17] Azzopardi B.J., Williams N.M.: Calculation of two phase pressure drop by means of an annular flow model, 2nd Multiphase Flow and Heat Transfer Symposium/Workshop, Miami, 1979.
  • [18] Whalley P.B., Hutchinson P., Hewitt G.F.: Prediction of annular flow parameters for transient conditions and for complex geometries, European Two-Phase Flow Group Meeting, Haifa, 1975.
  • [19] Saito T., Hughes E.D., Carbon M.W.: Multi-fluid modeling of annular two-phase flow, Nucl. Eng. Des., Vol. 50, 1978, 225-271.
  • [20] Jensen A. and Mannov G.: Measurement of burnout, film flow and pressure drop in a concentric annulus 3500x26x17mm with heated rod and tube, European Two-Phase Flow Group Meeting, Harwell, 1974.
  • [21] Caetano E.F., Shoham O., Brill J.P.: Upward vertical two-phase floe through an annulus — Part II: Modeling bubble, slug and annular flow, J. Energy Resources Tech., Vol. 114, 1992, 14-30.
  • [22] Wallis G.B.: One-Dimensional Two-phase Flow, McGraw-Hill, 1969.
  • [23] Butterworth D.: A visual study of mechanisms in horizontal air water flow, UKAEA Report, AERE M 2556, 1967.
  • [24] Butterworth D.: An analysis of film flow for horizontal flow and condensation in a horizontal tube, UKAEA Report AERE R7575, 1973.
  • [25] Hutchinson P., Butterworth D., Owen R.G.: Development of a model for horizontal annular flow, UKAEA Report AERE R7789, 1974.
  • [26] Fisher S.A., Pearce D.L.: An annular flow model for predicting liquid carryover into austenitic superheaters, Int. J. Multiphase Flow, Vol. 19, 1993, 295-307.
  • [27] Laurinat J.E. Hanratty T.J., Jepson W.P., Film thickness distribution for gas-liquid annular flow in a horizontal pipe, PhysicoChem Hydrodyn Vol. 6, 1985, 179-195.
  • [28] James P.W., Wilkes N.S. Conkie W., Burns A.: Developments in the modelling of horizontal annular two-phase flow, Int. J. Multiphase Flow, Vol. 13, 1987, 173-198.
  • [29] Fukano T., Ousaka A.: Prediction of the circumferential distribution of film thickness in horizontal and near-horizontal gas-liquid annular flow, Int. J. Multiphase Flow, Vol. 15, 1989, 403-419.
  • [30] Peng F., Shoukri M.: Modelling the phase redistribution of horizontal annular flow divided in T-junctions, Can. J. Chem. Eng., Vol. 75, 1997, 264-270.
  • [31] Hurlburt E.T., Newell T.A.: Prediction of the circumferential film thickness distribution in horizontal annular gas-liquid flow, J. Fluids Eng., Vol. 122, 2000, 1-7.
  • [32] Adechy D., Issa R.I.: Modelling annular flow through pipes and T-junctions, Computers and Fluids, Vol. 33, 2004, 289-313.
  • [33] Jepson W.P.: Liquid film thickness variation in horizontal annular flow in large diameter pipes, AERE Report R12991, 1988.
  • [34] Mols B., Oliemans R.V.A.: A turbulent diffusion model for particle dispersion and deposition in horizontal tube flow, Int. J. Multiphase Flow, Vol. 24, 1998, 77-92.
  • [35] Flores A.G., Crowe K.E., Griffith P.: Gas-phase secondary flow in horizontal stratified and annular two-phase flow; Int. J. Multiphase Flow, Vol. 21, 1995, 207-221.
  • [36] Jayanti S., Wilkes N.S., Clarke D.S., Hewitt G.F., The prediction of turbulent flows over roughened surfaces and its application to interpretation of mechanisms of horizontal annular flow, Proc. Roy. Soc., Vol. A 431, 1990, 71-88.
  • [37] Butterworth D., Pulling D.J.: A visual study of mechanisms in horizontal annular, air-water flow, UKAEA Report AERE M2556, 1972.
  • [38] Sutharshan B., Kawaji M., Ousaka A.: Measurement of circumferential and axial film velocities in horizontal annular flow, AIChE J, Vol. 21, 1995, 193-206.
  • [39] Fukano T., Inatomi T.: Analysis of liquid film formation in a horizontal annular flow by DNS, Int. J. Multiphese Flow, Vol. 29, 2003, 1413-1430.
  • [40] Henstock W.H., Henratty T.J.: The interfacial drug and height of the wall layer in annular flows, AIChE J, Vol. 22, 1976, 990-1000.
  • [41] Roberts P.A., Azzopardi B.J., Hibberd S.: The split of horizontal annular at a T-junction, Chem. Eng. Sci., Vol. 52, 1997, 3441-3453.
  • [42] Azzopardi B.J., Rea S.: Modelling the split of horizontal annular flow at a T-junction, Chem. Eng. Res. Des., Vol. 77A, 1999, 713-720.
  • [43] Tse C.P., Sugaware S.: Film thickness prediction in a horizontal annular two-phase flow, Int. J. Multiphase Flow, Vol. 16, 1990, 867-884.
  • [44] Tso C.P., Sugawara S.: Corrective technique for numerical prediction of liquid flow rate in annular flow study. Comm. Num. Methods, Vol. 9, 1993, 533-542.
  • [45] Butterworth D., Pulling D.J.: Film flow and film thickness measurements for horizontal annular air-water flow, UKAEA Report AERE R7576, 1973.
  • [46] Azzopardi B.J., Govan A.H.: Annular two phase flow in venturis, European Two Phase Flow Group Meeting, Southampton, 1985.
  • [47] Azzopardi B.J., Teixeira S.F.C.F., Govan A.H., Bott T.R.: An improved model for pressure drop in venturi scrubbers, Process Safety and Environ. Prot., Vol. 69, 1991, 237-245.
  • [48] Sun H., Azzopardi B.J.: Modelling gas-liquid flow in venturi scrubbers at high pressure, Process Safety and Environ. Prot., Vol. 81, 2003, 250-256.
  • [49] Werven van M., Maanen van H.R.E., Ooms G., Azzopardi B.J.: Modeling wet-gas annular/dispersed flow through a venturi, AIChE J, Vol. 49, 2003, 1383-1391.
  • [50] Chong L.Y., Azzopardi B.J., Bate D.J.: Calculation of conditions at which dry out occurs in the serpentine channels of fired reboilers, Chem. Eng. Res. Des., Vol. 83, 2005, 412-422.
  • [51] Usui K.: Annular two-phase flow in a C-shaped bend (flow of liquid drop entrained in the gas core), Trans. JSME, Vol. 59, 1993, 214-219.
  • [52] James P.W. Azzopardi B.J., Graham D.I., Sudlow C.A.: The effect of a bend on droplet size distribution in two phase flow, Proc. 7th Int. Conf. Multiphase Flow in Industrial Plants, Bologna, 2000, 211-222.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-1469-5790
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.