PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the constitutive relations for second sound in thermo-electroelasticity

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In papers [1] and [2] of 1982, Coleman, Fabrizio and Owen gave a derivation of implications of the second law of thermodynamics to describe second sound in rigid heat conductors, by using a natural extension to anisotropic media of the well-known Cattaneo’s relation. Later, in 1992, Öncü and Moodie [3] gave a derivation of the constitutive relations of an elastic heat conductor for which the heat flux and the temperature obey a frame-invariant form of a generalized Cattaneo’s equation. Recently, in 2004, Rybalko [4] has shown that a second-sound wave is accompanied by the appearance of electric induction. Here, we extend the theory [3]: following the standard Coleman–Noll procedure [5], we derive the thermodynamic restrictions on the constitutive relations for an electrically polarizable and finitely deformable, heat conducting elastic continuum which interacts with the electric field. The constitutive equations include an evolution equation for the heat flux; the latter and the temperature obey a frame-invariant form of Cattaneo’s equation.
Słowa kluczowe
Rocznik
Strony
225--225
Opis fizyczny
–-254, Bibliogr. 55 poz.
Twórcy
autor
  • Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate University of Padua Via Trieste 63 35121 Padova, Italy, montanaro@dmsa.unipd.it
Bibliografia
  • 1. B.D. Coleman, M. Fabrizio, D.R. Owen, On the thermodynamics of second sound In dielectric crystals, Arch. Rational Mechanics and Anal., 80, 135–158, 1982.
  • 2. B.D. Coleman, M. Fabrizio, D.R. Owen, Il secondo suono nei cristalli: termodinamica ed equazioni costitutive, Rend. Sem. Mat. Univ. Padova, 68, 208–277, 1982.
  • 3. T.S. Öncü, T.B. Moodie, On the constitutive relations for second sound in elastic solids, Arch. Rational Mech. Anal., 121, 87–99, 1992.
  • 4. A.S. Rybalko, Observation of the electric induction due to a second-sound wave in He II, J. Low Temp. Phys., 30, 994, 2004.
  • 5. B.D. Coleman, W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Ration. Mech. Anal., 13, 167–178, 1963.
  • 6. V. Peshkov, Second sound in helium II, J. Phys., 8, 381, 1944.
  • 7. R.J. von Gutfeld, Physical Acoustics, W. Mason [Ed.], Academic, New York 1968, 5, p. 233.
  • 8. C.C. Ackerman, R.A. Guyer, Temperature pulse id dielectric solids, Ann. Phys., 50, 128–185, 1968.
  • 9. H.E. Jackson, C.T. Walker, T.F. McNelly, Second sound in NaF, Phys. Rev. Lett., 25, 26–28, 1970.
  • 10. V. Narayanamurti, R.C. Dynes, Observation of second sound in Bismuth, Phys. Rev. Lett., 28, 1461–1465, 1972.
  • 11. C. Cattaneo, Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Modena, 3, 83–101, 1948.
  • 12. N. Fox, Generalized thermoelasticity, Int. J. Engrg. Sci., 7, 437–445, 1969.
  • 13. M.E. Gurtin, A.C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Ration. Mech. Anal., 31, 113, 1968.
  • 14. P. Chen, M.E. Gurtin, On second sound in materials with memory, Z. Angew. Math. Phys., 21, 232–242, 1970.
  • 15. D.D. Joseph, L. Preziosi, Heat waves, Rev. Mod. Phys., 61, 41–73, 1989.
  • 16. D.D. Joseph, L. Preziosi, Addendum to the paper ‘Heat waves’ [Rev. Mod. Phys., 61, 41–73, 1989], Rev. Mod. Phys., 62, 375–391, 1990.
  • 17. H. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, Mech. Phys. Solids, 15, 299–309, 1967.
  • 18. I. Müller, Die Kältefunktion, eine universelle Funktion der Thermodynamik vis koser wärmeleitender Flüssigkeiten, Arch. Ration. Mech. Anal., 40, 1–36, 1970.
  • 19. I. Müller, M.E. Gurtin, The coldness, a universal function in thermoelastic bodies, Arch. Rational Mech. Anal., 41, 319–332, 1971.
  • 20. A.E. Green, K.A. Lindsay, Thermoelasticity, J. Elasticity, 1, 1–7, 1970.
  • 21. G. Caviglia, A. Morro, B. Straughan, Thermoelasticity at Cryogenic Temperatures, J. Non-Linear Mechanics, 27, 2, 251–263, 1992.
  • 22. A. Morro, R. Ruggeri, Non-equilibrium properties of solids obtained from second-sound measurements. J. Phys. C: Solid State Phys., 21, 1743–1752, 1988.
  • 23. V.A. Cimmelli, Thermoelasticity of Anisotropic Solids Near Absolute Zero. Math. Comput. Modelling, 28, 3, 79–89, 1998.
  • 24. V.A. Cimmelli, A. Sellitto, V. Triani, A generalized Coleman-Noll procedure for the exploitation of the entropy principle, Proc. R. Soc. A., 466, 911–925, 2010.
  • 25. D. Jou, J. Casas-Vàzquez, G. Lebon, Extended Irreversible Thermodynamics, 4th ed., Springer, Berlin, pp. 483, 2010.
  • 26. I. Müller T. Ruggeri, Rational Extended Thermodynamics, Springer Tracts in Natural Philosopy, Vol. 37, 2nd ed., Springer, New York, 1998.
  • 27. G. Lebon, P.C. Dauby, Heat-transport in dielectric crystals at low temperature: A variational formulation based on extended irreversible thermodynamics. Physical Review A, 42, 4710–4715, 1990.
  • 28. A.E. Green, P.M. Naghdi, A re-examination of the basic postulates of thermomechanics. Proceedings of the Royal Society London, 432, 171–194, 1991.
  • 29. A.E. Green, P.M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15, 253–264, 1992.
  • 30. A.S. Rybalko, E. Rudavskii, S. Rubets, V. Tikhiy, V. Derkach, S. Tarapov, Electric Induction in He II. J. Low Temp. Phys., 148, 527–534, 2007.
  • 31. E.A. Pashitskii, S.M. Ryabchenko, On the cause of electric activity of superfluid helium upon excitation of a second sound wave and normal-component velocity oscillations in it, J. Low Temp. Phys., 33, 12–21, January 2007.
  • 32. E.A. Pashitskii, O.M. Tkachenko, K.V. Grygoryshyn, B.I. Lev, On the nature of electrical activity in superfluid helium at second sound excitation, Ukr. J. Phys. 54, 89–93, 2009.
  • 33. L.D. Landau, The theory of superfluidity in helium II, J. Phys. USSR, 5, 71, 1941.
  • 34. R.J. Atkin, N. Fox, M.W. Vasey, A continuum approach to the second-sound effect, J. of Elasticity, 5, 237–248, 1975.
  • 35. R.J. Atkin, N. Fox, Some effects in liquid helium II – a continuum approach, Rheol. Acta, 16, 213–222, 1977.
  • 36. R.D. Mindlin, On the equations of motion of piezoelectric crystals, in: N.I. Muskielishvili, Problems of continuum Mechanics, 70th Birthday Volume, SIAM, Philadelphia, pp. 282–290, 1961.
  • 37. R.D. Mindlin, Equations of high frequency vibrations of thermo-piezoelectric plates, Int. J. Solids Struct., 10, 625–637, 1974.
  • 38. W. Nowacki, Some general theorems of thermo-piezoelectricity, J. Therm. Stress., 1, 171–182, 1978.
  • 39. W. Nowacki, Foundations of linear piezoelectricity, [in] Electromagnetic Interactions In Elastic Solids, H. Parkus [Ed.], Springer, Wien, 1979, Chapter 1.
  • 40. D.S. Chandrasekharaiah, A generalized linear thermoelasticity theory for piezo electric media, Acta Mechanica, 71, 39-49, 1988.
  • 41. M. Aouadi, Generalized thermo-piezoelectric problems with temperature-dependent properties, Int. J. Solids and Structures, 43, No. 2, 6347–6358, 2006.
  • 42. M. Aouadi, The generalized theory of thermo-magnetoelectroelasticity, Technische Mechanik, 27, No. 2, 133–146, 2006.
  • 43. H.M. Youssef, E. Bassiouny, Two-temperature generalized thermopiezoelasticity for one-dimensional problems – state space approach, Computational Methods in Science and Technology, 14, 1, 55–64, 2008.
  • 44. C. Truesdell, Rational Thermodynamics, Springer, Berlin-Heidelberg-New York, 2nd ed., 1984.
  • 45. H.F. Tiersten, On the nonlinear equations of thermoelectroelasticity, Int. J. Engng Sci., 9, 587–604, 1971.
  • 46. R.A. Toupin, The elastic dielectric, J. Rational Mech. Anal., 5, No. 6, 849–915, 1956.
  • 47. K. Hutter, A.A.F. van de Ven, A. Ursescu, Electromagnetic Field Matter Interactions in Thermoelastic Solids and Viscous Fluids, Lect. Notes Phys. 710, Springer, Berlin Heidelberg 2006.
  • 48. H.F. Tiersten, A Development of the Equations of Electromagnetism in Material Continua, Springer, New York 1990.
  • 49. J.B. Alblas, General Theory of Electro- and Magneto-Elasticity, in: Electromagnetic Interactions in Elastic Solids, CISM courses and lectures, no. 257, Int. Centre for Mech. Sci., Springer, Wien–New York 1979.
  • 50. R.A. Guyer, J.A. Krumhansl, Solution of the Boltzmann equation, Phys. Rev., 148, 766, 1966.
  • 51. R.A. Guyer, J.A. Krumhansl, Thermal conductivity, second sound and phonon hydrodynamic phenomena in nonmetallic crystals, Phys. Rev., 148, 778, 1966.
  • 52. C.C. Ackerman, R.A. Guyer, Temperature pulses in dielectric solids, Annals of Physics, 50, 128, 1968.
  • 53. G. Lebon, D. Jou, J. Casas-Vázquez, W. Muschik, Weakly non-local and non-linear heat transport in rigid solids, J. Non-Equil. Thermodyn., 23, 176, 1998.
  • 54. J.S. Yang, Equations for Small Fields Superposed on Finite Biasing Fields in a Thermoelectroelastic Body, IEEE Transactions on Ultrasonics, Ferroelectricts, and Frequency Control, 50, 187–192, no. 2, February 2003.
  • 55. S. Bargmann, R Greve, P. Steinmann, Simulation of cryovolcanism on Saturn’s moon Enceladus with the Green–Naghdi theory of thermoelasticity. Bullettin of Glaciological Research, 26, 23–32, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0010-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.