PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Jednorodność własności elektrycznych monokryształów antymonku galu domieszkowanych tellurem

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Homogeneity of electrical parameters of tellurium-doped gallium antimonide single crystals
Języki publikacji
PL
Abstrakty
PL
Monokryształy antymonku galu (GaSb) domieszkowane tellurem prezentowane w tej pracy otrzymane zostały zmodyfikowaną metodą Czochralskiego zintegrowaną z syntezą in-situ. Uzyskano płytki monokrystaliczne GaSb:Te o przewodnictwie zarówno typu n jak i typu p. Płytki GaSb:Te typu n charakteryzowały się standardową koncentracją nośników ładunku (od 2 x 1017 do 2 x 1018 cm-3) oraz poniżej 2 x 1017 cm-3. Dla płytek monokrystalicznych GaSb:Te typu p koncentracja dziur wynosiła od 2 x 1016do 4 x 1016 cm-3. Zbadano zarówno osiowe, jak i radialne rozkłady własności elektrycznych otrzymanych kryształów GaSb:Te. W oparciu o pomiary hallowskie w funkcji temperatury porównano własności niedomieszkowanych monokryształów otrzymanych z antymonu pochodzącego z różnych źródeł oraz kryształów domieszkowanych tellurem o typie przewodnictwa p oraz typie n.
EN
Gallium antimonide (GaSb) single crystals undoped and doped with tellurium with n-type or p-type conductivity were grown by a modified Czochralski method integrated with in-situ synthesis. Tellurium doped n-type GaSb single crystals were obtained with standard carrier concentration from 2 x 1017 to 2 x 1018 cm-3 as well as below 2 x 1017 cm-3 for low Te-doped single crystals. Hole concentration in the cas of tellurium doped p-type GaSb wafers varied between 4 x 1016 and 2 x 1016 cm-3. Axial and radial distribution of electrical parameters were investigated for the obtained Te-doped GaSb single crystals. A great contribution of compensation and self-compensation mechanisms was confirmed especially for low Te-doped GaSb single crystals. Temperature dependent Hall measurements were used to compare undoped GaSb crystals obtained from Sb of different purity tellurium doped GaSb with n-type or p-type conductivity.
Rocznik
Strony
3--21
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
autor
autor
autor
Bibliografia
  • [1] Milnes A.G., Polyakov A.Y.: Review - Gallium antimonide device related properties, Solid State Electr., 36(1993) 803-818
  • [2] Doerschel J., Geissler U.: Characterization of extended defects in highly Te-doped <111> GaSb single crystals grown by the Czochralski technique, J. Cryst. Growth, 121 (1992) 781-789
  • [3] Tsang W.T., Chiu T.H., Kisker W., Ditzenberger J.A.: Molecular beem epitaxial growth of In1-xGaxAs1-xSbx, lattice matched to GaSb, Appl. Phys. Lett., 46 (1985) 283-285
  • [4] Lee H., York P.K., Menna R.J., Martinelli R.U., Garbuzov D, Narayan S.Y.: 2,78 μm InGaSb/AlGaSb multiple quantum-well lasers with metastable InGaAsSb wells grown by molecular beem epitaxy, J. Cryst. Growth, 150 (1995) 1354-1357
  • [5] Garbuzov D.Z., Martinelli R.U., Menna R.J., York P.K., Lee H., Narayan S.Y., Connolly J.C.: 2.7 μm InGaAsSb/AlGaAsSb laser diodes with continous-wave operation up to -39°C, Appl. Phys. Lett. 67 (1995) 1346-1348
  • [6] Ducanchez A., Cerutti L., Grech P., Genty F., Tournie E.: Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 μm, Electr. Lett., 45 (2009) 265-267
  • [7] Motyka M., et all.: Optical properties of GaSb-based type II quantum wells as the active region of midinfrared interband cascade lasers for gas sensing applications, Appl.Phys.Lett., 94 (2009) 251901
  • [8] Lackner D., et all: Growth of InAsSb/InAs MQWs on GaSb for mid-IR photodetector applications, J.Cryst. Growth, 311 (2009) 3563-3567
  • [9] Anikeev S., Donetsky D., Belenky G., Luryi S., Wang C.A., Borrego J.M., Nichols G.: Measurement of the Auger recombination rate in p-type 0.54 eV GalnAsSb by time resolved photoluminescence, Appl. Phys. Lett., 83 (2003) 3317-3319
  • [10] Luca S., Santailler J.L., Rothman J., Belle J.P., Calvat C., Basset G., Passero A., Khvostikov V.P., Potapovich N.S., Levin R.V.: GaSb crystals and wafers for photovoltaic devices, J. Sol. Ener. Eng., 129 (2007) 304-313
  • [11] Khvostikov V.P., Santailler J.L, Rothman J., Bell J.P., Couchaud M., Calvat C., Basset G., Passero A., Khvostikova O.A., Shvarts M.Z.: Thermophotovoltaic GaSb cells fabrication and characterization, AIP Conf. Proc.. 890 (2007) 198-207
  • [12] Afrailov M.A., Andreev I. A., Kunitsyna E.V., Mikhailova M.P., Yakovlev Y.P., Erturk K.: Gallium antimonide-based photodiodes and thermophotovoltaic devices, AIP Conf. Proc.. 899 (2007) 447-448
  • [13] Dutta P.S., Bhat H.L.: The physics and technology of gallium antimonide: An emerging optoelectronic material, J. Appl. Phys., 81 (1997) 5821-5870
  • [14] Mirowska A., Orłowski W., Bańkowska A., Hruban A.: Dobór warunków wzrostu monokryształów antymonku galu w kierunku <111> oraz <100> metody Czochralskiego, Mater. Elektron., 37/2 (2009) 3-15
  • [15] Mirowska A., Orłowski W.: Domieszkowanie monokryształów antymonku galu na typ przewodnictwa n oraz na typ p, Mater. Elektron., 38/1 (2010) 17-32
  • [16] Stepanek B., Sestakova V., Sestak J.: Analiza porównawcza monokryształów GaSb otrzymanych różnymi metodami, Neograniceskie Mater., 29 (1993) 1210-1215
  • [17] Meinardi F., Parisini A., Tarricone L.: A study of the electrical properties controlled by residual acceptors in gallium antimonide, Semicond. Sci. Technol., 8 (1993) 1985-1922
  • [18] Ichimura M., Higuchi K., Hattori Y., Wada T.: Native defects in the AlxGa1-xSb alloy semiconductor, J. Appl. Phys., 68 (1990) 6153-6158
  • [19] Hakala M., Puska M.J., Nieminen R.M.: Native defects and self-diffusion in GaSb, J. Appl. Phys., 91 (2002) 4988-4994
  • [20] Ling C.C., Lui M.K., Ma S.K., Chen X.D., Fung S., Beling C.D.: Nature of the acceptor responsible for p-type conduction in liquid encapsulated Czochralski-grown undoped gallium antimonide, Appl. Phys. Lett., 85 (2004) 384-386
  • [21] Lui M.K., Ling C.C.: Liquid encapsulated Czochralski grown undoped p-type gallium antimonide studied by temperature-dependent Hall measurement, Semicond. Sci. Technol.. 20(2005) 1157-1161
  • [22] Sunder W. A., Barns R.L., Kometani T.Y., Parsey J.M., Laudise R.A.: Czochralski growth and characterization of GaSb, J. Cryst. Growth. 78 (1986) 9-18
  • [23] Mimkes J., Sestakova V., Nassr K.M., Lubbers M., Stepanek B.: Diffusion mobility and defect analysis in GaSb, J. Cryst. Growth, 187 (1998) 355-362
  • [24] Dutta P.S., Ostrogsky A.: Nearly diffusion controlled segregation of tellurium in GaSb, J. Cryst. Growth, 191 (1998)904-908
  • [25] Nakamura T., Nishinaga T., Ge P., Huo C.: Distribution of Te in GaSb grown by Bridgman technique under microgravity, J. Cryst. Growth, 211 (2000) 441-445
  • [26] Milvidskaya A.G., Polyakov A.Y., Kolchina G.P., Milnes A.G., Govorkov A.V., Smirnov N.B., Tunitskaya I.V.: The properties of heavily compensated high resistivity GaSb crystals, Mater. Sci. Eng., B22 (1994)279-282
  • [27] Dutta P.S., Prasad V., Bhat H.L.: Carrier compensation and scattering mechanisms in p-GaSb, J. Appl. Phys., 80(1996)2847-2853
  • [28] Sestakova V., Stepanek B.: Doping of GaSb single crystals with various elements, J. Cryst. Growth, 146 (1995) 87-91
  • [29] Sestakova V., Stepanek B., Sestak J.: Te-doped GaSb crystals grown in ionized hydrogen atmosphere, J. Cryst. Growth, 181 (1997) 290-292
  • [30] Stepanek B., Sourek Z., Sestakova V., Sestak J., Kub J.: Study of low Te-doped GaSb single crystals, J. Cryst. Growth, 135 (1994) 290-296
  • [31] Dutta P.S., Ostrogorsky A.G.: Segregation of tellurium in GaSb single crystals and associated diffusion coefficient in the solute layer, J. Cryst. Growth, 197 (1999) 749-754
  • [32] Vul’ A.Ya. Handbook Series on Semiconductor Parameters, vol.1, Levinshtein M., Rumyantsev S., Shur M., World Scientific, London, 1996, 125-146
  • [33] Danilewsky A.N., Lauer S., Meinhardt J., Benz K.W., Kaufmann B., Hofmann R., Dornen A.: Growth and characterization of GaSb bulk crystals with low acceptor concentration, J. El. Mat, 25 (1996) 1082-1087
  • [34] Hayakawa Y, Saitou Y, Sugimoto Y, Kumagawa M.: Analysis of impurity concentration distributions in pulled semiconductor crystals, J. El. Mat., 19 (1990) 145-149
  • [35] Mirowska A., Orłowski W., Bańkowska A.: Monokryształy antymonku galu (GaSb) otrzymane metoda Czochralskiego, Elektronika, 1 (2010) 53-55
  • [36] Pfann W.G.: J. Metals, 194 (1952) 747
  • [37] Tiller W.A., Jackson K.A., Rutter J.W., Chalmers B.: Ada Met., 1 (1953) 428
  • [38] Chin A.K., Bonner W.A.: Investigations of impurity variations by cathodoluminescence imaging: Application to GaSb:Te, Appl. Phys. Lett., 40 (1982) 248-251
  • [39] Pino R., Ko Y, Dutta P.S.: Native defect compensation in III-antimonide bulk substrates, Int. J. High Speed Electr. Syst., 14 (2004) 658-663
  • [40] Pino R., Ko Y, Dutta P.S.: High-resistivity GaSb bulk crystals grown by the vertical Bridgman method, J. El. Mat. 33 (2004) 1012-1015
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0073-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.