PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Complete characterization of ultrasound transducers through the "Field II" simulation program

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Acoustic field characterization is usually limited to the measurement of the field amplitude, and employs well-known investigation methods. However, it is known that in many applications an important role is played by the phase field distribution. For example, a complete acoustic field characterization (i.e. the determination of both the amplitude and phase field distributions), results very useful for the correct interpretation of the Doppler signals detected by such a transducer. In this paper a technique for the measurement of the complex field (phasor) produced by single element transducers is presented. It is based on the time domain analysis of the RF pressure signals produced in front of the transducer. The technique, proposed as a general experimental procedure for the concurrent measurement of phase and amplitude fields, is here applied to fields synthesized with the "Field II" simulation program. Simulation results are compared with field distributions both available in the literature in analytic form, or derived experimentally.
Słowa kluczowe
Rocznik
Strony
255--268
Opis fizyczny
Bibliogr. 13 poz., rys., tab., wykr.
Twórcy
autor
autor
  • Electronic Engineering Department, University of Florence, 3-50139 Florence, Via S. Marta, Italy, g.guidi@ieee.org
Bibliografia
  • 1] J.W . Hunt, M. Arditi and F.S. Foster, Ultrasound transducers for pulse echo medical imaging, IEEE Trans, on Biomed. Eng., 30, 453 -481 (1983).
  • [2] P.J . Fish, Doppler methods, [in:] Physical Principles of Medical Ultrasonics, 350-363, C.R. Hill [Ed.], Ellis Horwood, Chichester, UK 1986.
  • [3] O .W . Ata and P.J. Fish, Effect of deviation from plane wave conditions on the Doppler spectrum from an ultrasonic blood flow detector, Ultrasonics. 29, 395-403 (1991).
  • [4] J.D. Aindow and R.C. Chivers, Measurement of the phase variation in an ultrasonic field, J. Phys. E: Sci. Instrum., 15, 83-86 (1982).
  • [5] G. Guidi and S. Falteri, Phase measurement of acoustic fields based on a moving target, IEEE Tiansactions on Ultrasonics, Ferroelectrics & Frequency Control, 46, 679-689 (1999).
  • [6] J. A. JENSEN and N.B. SVENDSEN, Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers, IEEE Transactions on Ultrasonics, Ferroelectrics & Frequency Control, 39, 262-267 (1992).
  • [7] G.E. Tupholme, Generation of acoustic pulses by baffled plane pistons, Matematika, 16, 209-224 (1969).
  • [8] P R. Stephanishen, Transient radiation from pistons in an infinite planar baffle, J .Acoust. Soc. Am., 77, 1629-1638 (1971).
  • [9] E. Maione, P. Tortoli, G. Łypacewicz, A. Nowicki and J.M. Reid, Pspice modeling of ultra¬sound transducers: comparison of software models to experiments, IEEE Tiansactions on Ultra¬sonics, Ferroelectrics & Frequency Control, 46, 399-406 (1999).
  • [10] J.W. Goodman, Introduction to Fourier optics, pp. 33-34, McGraw-Hill, New York 1968.
  • [11] H.T. O’Neil, Theory of focusing radiators, J. Acoust. Soc. Am., 21, 126-516 (1949).
  • [12] G.S. Kino, Acoustic waves: devices, imaging and analog signal processing, pp. 182-186, Prentice Hall, Englewood Cliffs, 1987.
  • [13] P. Fish, Physics and instrumentation of diagnostic medical ultrasounds, pp. 32-37, John Wiley & Sons, 1990.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0007-0083
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.