PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Computation of energy for diapycnal mixing in the Baltic Sea due to internal wave drag acting on wind-driven barotropic currents

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The pathways of energy supply for mixing the deep waters of the Baltic Sea is largely unknown. In this paper, a parameterization of the internal wave drag forces on barotropic motion is developed and implemented into a two-dimensional shallow water model of the Baltic Sea. The model is validated against observed sea levels. The dissipation of barotropic motion by internal wave drag that is quantified from the model results show that breaking internal waves generated by wind forced barotropic motions can contribute significantly to diapycnal mixing in the deep water of the Baltic Sea.
Słowa kluczowe
Czasopismo
Rocznik
Strony
461--494
Opis fizyczny
bibliogr. 47 poz., tab., wykr.
Twórcy
autor
  • Department of Earth Science, University of Gothenburg, Box 460, SE-405 30 Göteborg, Sweden, chno@oce.gu.se
Bibliografia
  • 1.Arakawa A., Lamb V.R., 1981, A potential enstrophy and energy conserving scheme for the shallow water equations, Mon. Weather Rev., 109 (1), 18-36.
  • 2.Arbic B.K., Garner S.T., Hallberg R.W., Simmons H. L., 2004, The accuracy of surface elevations in forward global barotropic and baroclinic tide models, Deep-Sea Res. Pt. II, 51 (25-26), 3069-3101.
  • 3.Arneborg L., 2000, Oceanographic studies of internal waves and diapycnal mixing, Ph.D. thesis A59, Earth Sci. Cent., Univ. Gothenburg, Sweden. Arneborg L., 2002, Mixing efficiencies in patchy turbulence, J. Phys. Oceanogr., 32 (5), 1496-1506.
  • 4.Axell L.B., 1998, On the variability of Baltic Sea deepwater mixing, J. Geophys. Res., 103 (C10), 21 667-21 682.
  • 5.Berntsen J., Xing J., Davies A.M., 2008, Numerical studies of internal waves at a sill:S ensitivity to horizontal grid size and subgrid scale closure, Cont. Shelf Res., 28 (10-11), 1376-1393.
  • 6.Döös K., Nycander J., Sigray P., 2004, Slope-dependent friction in a barotropic model, J. Geophys. Res., 109 (C01008), doi:10.1029/2002JC001517.
  • 7.Dyer K.R., 1986, Coastal and estuarine sediment dynamics, John Wiley & Sons Ltd., Chichester, 358 pp.
  • 8.Egbert G.D., Ray R.D., Bills B. G., 2004, Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum, J. Geophys. Res., 109 (C03003), doi:10.1029/2003JC001973.
  • 9.Flather R.A., 1976, A tidal model of the northwest European continental shelf, Mem. Soc. Roy. Sci. Liege, Ser. 6th, Vol. 10, 141-160.
  • 10.Gustafsson B.G., Andersson H.C., 2001, Modeling the exchange of the Baltic Sea from the meridional atmospheric pressure difference across the North Sea, J. Geophys. Res., 106(C9), 19 731-19 744.
  • 11.Gustafsson K.E., 2001, Computations of the energy flux to mixing processes via baroclinic wave drag on barotropic tides, Deep-Sea Res. Pt. I, 48 (10), 2283-2295.
  • 12.Jakobsen F., Azam M.H., Mahboob-Ul-Kabir M., 2002, Residual flow in the Meghna Estuary on the coastline of Bangladesh, Estuar. Coast. Shelf Sci., 55 (4), 587-597.
  • 13.Jayne S.R., St. Laurent L.C., 2001, Parameterizing tidal dissipation over rough topography, Geophys. Res. Lett., 28 (5), 811-814.
  • 14.Johnsson M., Green J.A.M., Stigebrandt A., 2007, Baroclinic wave drag from two closely spaced sills in a narrow fjord as inferred from basin water mixing, J. Geophys. Res., 112 (C11002), doi:10.1029/2006JC003694.
  • 15.Kuzmina N., Rudels B., Stipa T., Zhurbas V., 2005, The structure and driving mechanisms of the Baltic intrusions, J. Phys. Oceanogr., 35 (6), 1120-1137.
  • 16.Liljebladh B., Stigebrandt A., 2000, The contribution of the surface layer via internal waves to the energetics of deepwater mixing in the baltic, Paper III Ph.D. thesis A56, Earth Sci. Cent., Univ. Gothenburg, Sweden.
  • 17.Martinsen E.A., Engedahl H., 1987, Implementation and testing of a lateral boundary scheme as an open boundary-condition in a barotropic ocean model, Coast. Eng., 11 (5-6), 603-627.
  • 18.Meier H.E.M., 2005, Modeling the age of Baltic Sea water masses:Q uantification and steady state sensitivity experiments, J. Geophys. Res., 110 (C02006), 1-14.
  • 19.Meier H.E.M., Feistel R., Piechura J., Arneborg L., Burchard H., Fiekas V., Golenko N., Kuzmina N., Mohrholz V., Nohr C., Paka V. T., Sellschopp J., Stips A., Zhurbas V., 2006, Ventilation of the Baltic Sea deep water:A brief review of present knowledge from observations and models, Oceanologia, 48 (S), 133-164.
  • 20.Merrifield M.A., Holloway P.E., 2002, Model estimates of M2 internal tide energetics at the Hawaiian Ridge, J. Geophys. Res., 107 (C8), doi:10.1029/2001JC000996.
  • 21.Niwa Y., Hibiya T., 2001, Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean, J. Geophys. Res., 106(C10), 22 441-22 449.
  • 22.Nycander J., 2005, Generation of internal waves in the deep ocean by tides, J. Geophys. Res., 110 (C10028), doi:10.1029/2004JC002607.
  • 23.Osborn T., 1980, Estimates of the local rate of vertical diffusion from dissipation measurements, J. Phys. Oceanogr., 10 (1), 83-89.
  • 24.Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., 1997, Numerical recipes, 2nd edn., Cambridge Univ. Press, Cambridge, 963 pp.
  • 25.Samuelsson M., Stigebrandt A., 1996, Main characteristics of the long-term sea level variability in the Baltic Sea, Tellus A, 48 (5), 672-683.
  • 26.Seifert T., Tauber F., Kayser B., 2001, A high resolution spherical grid topography of the Baltic Sea - revised edition, Proc. Baltic Sea Sci. Cong., 25-29 Nov. 2001, Stockholm, poster No 147.
  • 27.Simmons H. L., Hallberg R.W., Arbic B.K., 2004, Internal wave generation in a global baroclinic tide model, Deep-Sea Res. Pt. II, 51 (25-26), 3043-3068.
  • 28.Sjöberg B., Stigebrandt A., 1992, Computations of the geographical distribution of the energy flux to mixing processes via internal tides and the associated vertical circulation in the ocean, Deep-Sea Res., 39 (2A), 269-291.
  • 29.Smith S.D., 1980, Wind stress and heat flux over the ocean in gale force winds J. Phys. Oceanogr., 10 (5), 709-726.
  • 30.Soulsby R., 1997, Dynamics of marine sands - A manual for practical applications, Thomas Telford, London, 249 pp.
  • 31.St. Laurent L., Stringer S., Garrett C., Perrault-Joncas D., 2003, The generation of internal tides at abrupt topography, Deep-Sea Res. Pt. I, 50 (8), 987-1003.
  • 32.Stacey M.W., 1984, The interaction of tides with the sill of a tidally energetic inlet, J. Phys. Oceanogr., 14 (6), 1105-1117.
  • 33.Stigebrandt A., 1976, Vertical diffusion driven by internal waves in a sill fjord, J. Phys. Oceanogr., 6( 4), 486-495.
  • 34.Stigebrandt A., 1980a, Barotropic and baroclinic response of a semi-enclosed basin to barotropic forcing from the sea, [in:] Fjord oceanography, H. J. Freeland, D.M. Farmer & C.D. Levings (eds.), Plenum, New York, 151-164.
  • 35.Stigebrandt A., 1980b, Some aspects of tidal interactions with fjord constrictions, Estuar. Coast. Mar. Sci., 11 (2), 151-166.
  • 36.Stigebrandt A., 1999, Resistance to barotropic tidal flow in straits by baroclinic wave drag, J. Phys. Oceanogr., 29 (2), 191-197.
  • 37.Stigebrandt A., 2001, Physical oceanography of the Baltic Sea, [in:] A systems analysis of the Baltic Sea, F. Wulff, L. Rahm & P. Larsson (eds.), Springer Verlag, Heidelberg, 19-74.
  • 38.Stigebrandt A., 2003, Regulation of vertical stratification, length of stagnation periods and oxygen conditions in the deeper deepwater of the Baltic proper, Meereswiss. Ber., 54, 69-80.
  • 39.Stigebrandt A., Aure J., 1989, Vertical mixing in basin waters of fjords, J. Phys. Oceanogr., 19 (7), 917-926.
  • 40.Stigebrandt A., Lass H.U., Liljebladh B., Alenius P., Piechura J., Hietala R., Beszczyńska A., 2002, DIAMIX - An experimental study of diapycnal deepwater mixing in the virtually tideless Baltic Sea, Boreal Environ. Res., 7 (4), 363-369.
  • 41.Svensson A., 2005, Observations of baroclinic eddies in the Baltic Sea, Tech. Rep. B472, Dept. Oceanogr., Univ. Gothenburg.
  • 42.Tanaka Y., Hibiya T., Niwa Y., 2007, Estimates of tidal dissipation and diapycnal diffusivity in the Kuril Straits using TOPEX/POSEIDON altimeter data, J. Geophys. Res., 112 (C10021), doi:10.1029/2007JC004172.
  • 43.Tanaka Y., Hibiya T., Niwa Y., 2007, Estimates of tidal energy dissipation and diapycnal diffusivity in the Kuril Straits using topex/poseidon altimeter data, J. Geophys. Res., 112 (C10), 1-9.
  • 44.Umgiesser G., 1997, Modelling the Venice Lagoon, Int. J. Salt Lake Res., 6 (2), 175-199.
  • 45.Verboom G.K., de Ronde J.G., van Dijk R.P., 1992, A fine grid tidal flow and storm surge model of the North Sea, Cont. Shelf Res., 12 (2-3), 213-233.
  • 46.Weis P., Thomas M., Sündermann J., 2008, Broad frequency tidal dynamics simulated by a high resolution global ocean tide model forced by ephemerides, J. Geophys. Res., 113 (C10029), doi:10.1029/2007JC004556.
  • 47.Williamson J., 1980, Low-storage Runge-Kutta schemes, J. Comput. Phys., 35(1), 48-56.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0020-0045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.