PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Asymetryczna synteza a-aminokwasów

Identyfikatory
Warianty tytułu
EN
Asymmetric synthesis of a-amino acids
Języki publikacji
PL
Abstrakty
EN
a-Amino acids are among the most important compounds in living organisms. Amino acids are not only constituents of peptides and proteins but they play an important role in many reactions in living cells. There are many excellent methods of the asymmetric synthesis of a-amino acids, but only some of them are versatile. In this work we have reviewed and presented the most versatile methods, giving the best chemical yield and optical purity of the final products. One of the oldest and still useful synthetic routes to racemic a-amino acids is Strecker's method [3], (Scheme 1). Modification of the methods by Weinges et al. [8-11] (Scheme 2) allowed to obtain pure enantiomers of a-amino acids in high yields. Next important group of the methods applies 'glycine anion equivalent'. In this group, 'bislactim-ether' method of Schöllkopf et al. [13-21], (Scheme 3 and Tab. 1] has to be mentioned at first because of the high chemical yield of the transformation and optical purity of the final amino acid. The same type of methodology was employed by Seebach et al., their method utilizing oxazolidinones or imidazolidinones [22-26] (Schemes 4, 5 and Tab.2). Yield and enantiomeric excess (ee) of the final amino acid in the method of Seebach et al., is very high (in most cases >80%). The only inconvenience is connected with drastic conditions of final hydrolysis. The similar, good results were also obtained in methods utilizing enolates obtained from oxazinones [29-31], (Schemes 6-8 and Tabs 3,4). Derivatives of the oxazinones were also applied as 'glycine cation equivalent' in the method in which 'the chiral cation' reacts with nucleophiles [32, 33], (Scheme 9 and Tab.5) with the high chemical yield and ee of the final product. The similar procedures were used in an alkylation of a chiral Schiff base. The best yields and optical purity of the final a-amino acid were obtained by Oppolzer et al. [35,36], who applied a derivative of glycine attached to bornane-10,2-sultam (the derivative of camphor), (Schemes 13,14). The next group of synthetic procedures is based on a reaction of a ring opening of b-lactones obtained from serine [41-43], (Scheme 16) or threonine [44], and aziridines [45-48], (Scheme 17). A nucleophile attack on the b-carbon of the substrate gives amino acid with modified side chain. Despite the high yield and ee selection of possible nucleophiles is limited. Another important methodology is called 'electrophilic amination'. In this procedure a chiral enolate obtained from N-acyl-oxazolidinone [50,52], (Scheme 18,19) or N-acyl-sultam [51, 53 ], (Scheme 21) is aminated either by di-tert-butyl-azodicarboxylate (DBAD), [50, 51], trisyl azide [52], or 1-chloro-1-nitrozo-cyclohexane [53]. Yield of these reactions are high and ee exceeds 95%. Contrary to the 'electrophilic', a 'nucleophilic amination' requires a 'cation equivalent' obtained from a chiral N-acyl-derivatives [54-55]. The reaction usually yields a desired product of good enantiomeric quality. In most cases azide anion is a source of 'nucleophilic amine equivalent' (Schemes 22 and 23). The chiral 2,3-epoxy-1-ols can be also applied in this methodology [57, 58], (Scheme 24). Asymmetric catalytic hydrogenation of a dehydro derivatives of amino acids and peptides is another valuable group of synthetic routes to the single enantiomer of the amino acid. There is a possiblity of heterogenous and homogenous catalysis involving insoluble catalysis [60, 61], (Schemes 25, 26) or soluble [62, 63], (Schemes 27, 28) in medium of the reaction. The best results (yield = 100% and ee>99%) were reprted for the complexes of Rh with chiral phosphines ligands like BINAP or DIPAMP (Scheme 28), [67]. The last method reported in our review is based on the usage of enzymes. The most widely used in this field are the following enzymes : acylases - catalyzing stereoselective removal or synthesis of N-acyl deerivatives [70], (Scheme 30) and proteases - catalyzing methods give in many cases both enantiomers at the same time.
Rocznik
Strony
1--42
Opis fizyczny
schem., tab., bibligr 78 poz.
Twórcy
  • Zakład Chemii Peptydów, Wydział Chemii, Uniwersytet Gdański, ul. J. Sobieskiego 18 80-952 Gdańsk
autor
  • Zakład Chemii Peptydów, Wydział Chemii, Uniwersytet Gdański, ul. J. Sobieskiego 18, 80-952 Gdańsk
  • Zakład Chemii Peptydów, Wydział Chemii, Uniwersytet Gdański, ul. J. Sobieskiego 18, 80-952 Gdańsk
  • Zakład Chemii Peptydów, Wydział Chemii, Uniwersytet Gdański, ul. J. Sobieskiego 18 80-952 Gdańsk, tel. (058) 341-52-71 w.254, fax (058) 41-03-57, leszek@sun1.chem.univ.gda.pl
Bibliografia
  • [1] R. M. Williams, Synthesis of Optically Active a-Amino Acids, Pergamon Press, Oxford 1989.
  • [2] R. O. Duthaler, Tetrahedron, 1994, 50, 1539.
  • [3] A. Strecker, Liebigs. Ann. Chem., 1850, 75, 27.
  • [4] K. Harada, Nature, 1963, 200, 1201.
  • [5] K. Harada, T. Okarawa, J. Org. Chem., 197.3, 38, 707.
  • [6] K. Weinges, K. Gries, B. Stemmle, W. Schrank, Chem. Ber., 1977, 110, 2089.
  • [7] D. M. Stout, L. A. Black, W. L. Matier, J. Org. Chem., 1983, 48, 53».
  • [8] K. Weinges, B. Stemmle, Chem. Ber., 1973, 106, 2291.
  • [9] K. Weinges, G. Brune, H. Dorste, Liebigs Ann. Chem., 1980, 112.
  • [10] K. Weinges, H. Brachmann, P. Stahnecker, H. Rodewald, M. Nixdorf, H. Irngar- tinger, ibid., 1985, 566.
  • [11] K. Weinges, H. Blacholm, Chem. Ber., 1980, 113, 3089.
  • [12] T. K. Chakraborty, K. A. Hussain, G. V. Reddy, Tetrahedron, 1995, 51, 9179.
  • [13] U. Schollkopf, U. Groth, C. Deng, Angew. Chem. Int. Ed. Engl., 1981, 20, 798.
  • [14] U. Schollkopf, H.-J. Neubauer, Synthesis, 1982, 861.
  • [15] U. Schollkopf, U. Busse, R. Kilger, P. Lehr, ibid., 1984, 271.
  • [16] U. Schollkopf, W. Hartwig, U. Groth, Angew. Chem. Int. Ed. Engl., 1979, 18, 863.
  • [17] U. Groth, U. Schollkopf, Y.-C. Chiang, Synthesis, 1982, 846.
  • [18] U. Schollkopf, J. Nozulak, M. Grauert, ibid, 1985, 55.
  • [19] U. Schollkopf, D. Pettig, U. Busse, ibid., 1986, 737.
  • [20] U. Schollkopf, J. Nozulak, U. Groth, ibid., 1982, 868.
  • [21] D. Heerding, P. Bhatnagar, M. Hartmann, P. Kremminger, S. LoCastro, Tetrahedron: Asymmetry, 1996, 7, 237.
  • [22] R. Naef, D. Seebach, Helv. Chim. Acta, 1985, 68, 135.
  • [23] R. Fritzi, D. Seebach, Angew. Chem. Int. Ed. Engl., 1986, 25,345.
  • [24] R. Fritzi, D. Seebach, Tetrahedron, 1988, 44, 5277.
  • [25] T. Mukhopadhyay, D. Seebach, Helv. Chim. Acta, 1982, 65,385.
  • [26] D. Seebach, E. Juaristi, D. D. Miller, C. Schickli, T. Weber, ibid., 1987, 70, 237.
  • [27] D. Seebach, J. D. Aebi, R. Naef, T. Weber, ibid., 1985, 68, 144.
  • [28] D. Seebach, A. Fadel, ibid., 1985, 68, 1243.
  • [29] J. F. Dellaria, B. D. Santarsiero, Tetrahedron Lett., 1988, 29, 6079.
  • [30] J. F. Dellaria, B. D. Santarsiero, J. Org. Chem., 1989, 54, 3916.
  • [31] R. M. Williams, M.-N. lm, Tetrahedron Lett., 1988, 29, 6075.
  • [32] R. M. Williams, P. J. Sinclair, D. Zhai, D. Chen, J. Am. Chem. Soc., 1988, 110, 1547.
  • [33] R. Williams, Aldrichimica Acta, 1992, 25, 11.
  • [34] S.-I. Yamada, T. Oguri, T. Shioiri, J. C. S. Chem. Comm., 1976, 136.
  • [35] W. Oppolzer, R. Moretti, S. Thomi, Tetrahedron Lett., 1989, 30, 6009.
  • [36] W. Oppolzer, R. Moretti, Ch. Zhou, Helv. Chim. Acta, 1994, 77, 2363.
  • [37] Y. N. Belokon, A. G. Bulychev, S. V. Vitt, Y. T. Struchkov, A. S. Batsanov, T. V. Timefccva, V. A. T sryapkin, M. G. Ryzhov, L. A. Lysova, V. I. Bakhmutov, V. M. Belikov, J. Am. Chem. Soc., 1985, 107, 4252.
  • [38] Y. N. Belokon, A. S. Sagyan, S. M. Djamgaryan, V. I. Bakhmutov, V. M. Belikov, Tetrahedron, 1988, 44, 5507.
  • [39] V. I. Tararov, T. F. Savel’eva, N. Y. Kuznetsov, N. S. Ikonnikov, S. A. Orlova, Y. N. Belokon, M. North, Tetrahedron: Asymmetry, 1997, 8, 79.
  • [40] J. P. Genet, S. Juge, S. Achi, S. Mallaet, J. R. Montes, G. Levif, Tetrahedron, 1988,44, 5263.
  • [41] L. D. Arnold, T. H Kalantar, J. C. Vederas, J. Am. Chem. Soc., 1985, 107, 7105.
  • [42] L. D. Arnold, R. G. May, S. G Vederas, ibid., 1988, 110, 2237.
  • [43] L. D. Arnold, J. C. G. Drover, J. C. Vederas, ibid., 1987, 109, 4649.
  • [44] S. V. Pausarc, J. C. Vederas, J. Org. Chem., 1989, 54, 2311.
  • [45] K. Nakajima, F. Takai, T. Tanaka, K. Okawa, Bull. Chem. Soc. Jpn., 1978, 51, 1577.
  • [46] K. Nakajima, M. Neya, S. Yamada, K. Okawa, ibid., 1982, 55, 3049.
  • [47] K. Nakajima, T. Tanaka, K. Morita, K. Okawa, ibid., 1980, 53, 283.
  • [48] K. Nakajima, H. Ode, K. Okawa, ibid., 1983, 56, 520.
  • [49] N. J. Church, D. W. Young, Tetrahedron Lett., 1995, 36, 151.
  • [50] D. A. Evans, T. C. Britton, R. L. Dorrow, J. F. Dellaria, ibid., 1988, 44, 5525.
  • [51] W. Oppolzer, R. Moretti, ibid., 1988, 44, 5541.
  • [52] D. A. Evans, T. C. Britton, J. Am. Chem. Soc., 1987, 109, 6681.
  • [53] W. Oppolzer, O. Tamura, J. Deerberg, Helv. Chim. Acta, 1992, 75, 1965.
  • [54] D. A. Evans, J. A. Ellman, R. L. Dorrow, Tetrahedron Lett., 1987, 28, 1123.
  • [55] D. A Evans, T. C. Britton, J. A. Ellman, R. L. Dorrow, J. Am. Chem. Soc., 1990, 112, 4011.
  • [56] W. Oppolzer, R. Pedrosa, R. Moretti, Tetrahedron Lett., 1986, 27, 831.
  • [57] M. Caron, P. R. Carlier, K. B. Sharpless, J. Org. Chem., 1988, 53, 5185.
  • [58] N. Nagaoka, Y. Kishi, Tetrahedron, 1981, 37, 3783.
  • [59] C. G. Cadwell, S. S. Bondy, Synthesis, 1990, 34.
  • [60] T. Kanamera, S. Lee, H. Aoyagi, N. Izumija, Tetrahedron Lett., 1979, 20, 4483.
  • [61] M. Takasaki, K. Harada, Chemistry Lett., 1984, 1745.
  • [62] H. B. Kagan, M. Sasaki, Optically Active Phosphines: Preparation, Uses, and Chirooptical Properties, [w:] The Chemistry of Organophosphorus Compounds, tom 1, J. Wiley & Sons, New York 1990.
  • [63] R. Noyori, Asymmetric Catalysis in Organic Synthesis, VCH Publishers, Weinheiir 1993, rozdz. 2.
  • [64] J. Halpern, Inorganica Chim. Acta, 1981, 50, 11.
  • [65] M. J. Burk, M. F. Gross, J. P. Martinez, J. Chem. Soc., 1995, 117, 9375.
  • [66] M. Sawamura, R. Kuwano, Y. Ito, ibid., 1995, 117, 9602.
  • [67] I. Ojima, T. Suzuki, Tetrahedron Lett., 1980, 21, 1239.
  • [68] T. Ch. Bhalla, A. Muira, A. Wakamoto, Y. Ohba, K. Furuhashi, Appl. Microbiol. Biotechnol., 1992, 37, 184.
  • [69] H. K. Chenault, J. Dahmer, G. M. Whitesides, J. Am. Chem. Soc., 1989. HI, 6354.
  • [70] T. Miyazawa, H. Iwanaga, T. Yamada, S. Kuwata, Chirality, 1992, 4, 427.
  • [71] L. Lankiewicz, F. Kasprzykowski, Z. Grzonka, U. Kettmann, P. Hermann, Bioorganic Chem., 1989, 17, 275.
  • [72] T. Miyazawa, H. Iwanaga, S. Ueji, T. Yamada, S. Kuwata, Chemistry Lett., 1989, 2219.
  • [73] B. Schricker, K. Thirring, H. Berner, Bioorg. Med. Chem. Lett., 1992, 2, 387.
  • [74] I. Chibata, T. Tosa, Ann. Rev. Biophys. Bioeng., 1982, 10, 197.
  • [75] E. M. Meijer, W. H. J. Bocsten, H. E. Schoemaker, J. A. M. Van Balken, Iw:] Biocatalysts in Organic Synthesis, J. Tramper, H. C. Van der Plas, P. Linko (red.), Elsevier Pub., Amsterdam 1985.
  • [76] J. E. Baldwin, R. L. Dyer, S. C. Ng, A. J. Pratt, M. A. Russel, Tetrahedron Lett., 1987, 28, 3745.
  • [77] S. Yamada, K. Nabe, N. Izuo, K. Nakamichi, I. Chibata, Appl. Environ. Microbiol., 1981, 28, 773.
  • [78] M. Akhtar, M. A. Cohen, D. Gani, Tetrahedron Lett., 1987, 28, 2413.
Uwagi
PL
Opracowane ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS1-0002-0051
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.