PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sludge dewatering in a decanter centrifuge aided by cationic flocculant Praestol 855BS and essential oil of waste orange peels

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Odwadnianie osadów ściekowych w wirówce dekantacyjnej wspomagane flokulantem kationowym Praestol 855BS i olejkiem eterycznym z odpadu skórek pomarańczy
Języki publikacji
EN
Abstrakty
EN
In the study the comparative analysis of test results of drainage of municipal wastewater sludge was conducted with the use of flocculant Praestol 855BS and the mixture of flocculant Praestol 855BS 50% + orange essential oil 50%, as the reagents supporting this process. It was also attempted to reduce unpleasant smells exuding from the drained sludge. The process of drainage of municipal wastewater sludge was conducted in the laboratory setting centrifuge of MPW-350 type. The variable independent parameters were centrifugation time, centrifugation speed, dosage of flocculant Praestol 855BS as well as dosage of mixture in the proportion of flocculant Praestol 855BS (50%) + orange essential oil (50%). The following parameters were subject to assessment: water content in the sludge, dry mass content in the reflux as well as time of maintenance of the oil’s smell in the sludge. The conducted tests demonstrated that the orange essential oil has an impact on drop in resultant quality parameters of the drainage process of municipal wastewater sludge. Batching of the orange essential oil has an impact on considerable reduction of odours exuding from drained wastewater sludge, and thus on improvement of work conditions connected with operation of centrifugal separators. Bearing in mind both the efficient drainage process of wastewater sludge as well as simultaneous reduction of unpleasant smells exuding from the sludge during this process it is assumed and recommended to simultaneously apply both reagents, that is flocculant Praestol 855BS (50%) and orange essential oil, also in the volume of 50%.
PL
W pracy przeprowadzono ocenę porównawczą wyników badań odwadniania komunalnych osadów ściekowych z zastosowaniem flokulanta Praestol 855BS i mieszaniny flokulant Praestol 855BS 50% + olejek eteryczny z pomarańczy 50%, jako odczynników wspomagających ten proces, a także podjęto próbę obniżenia nieprzyjemnych zapachów wydzielających się z odwodnionych osadów. Proces odwadniania komunalnych osadów ściekowych prowadzono w laboratoryjnej wirówce sedymentacyjnej typu MPW-350. Parametrami zmiennymi niezależnymi procesu odwadniania były czas wirowania, prędkość wirowania, dawka fl okulanta Praestol 855BS oraz dawka mieszaniny w proporcji flokulant Praestol 855BS 50% + olejek eteryczny z pomarańczy 50%. Ocenie poddano: zawartość wody w osadzie, zawartość suchej masy w odcieku oraz czas utrzymywania się zapachu olejku w osadzie. Przeprowadzone badania wykazały, że olejek eteryczny z pomarańczy wpływa na spadek parametrów wynikowych, jakościowych procesu odwadniania komunalnych osadów ściekowych. Dozowanie olejku eterycznego z pomarańczy wpływa na znaczne obniżenie odorów wydzielających się z odwodnionych osadów ściekowych, a tym samym na polepszenie warunków pracy obsługi wirówek. Mając na uwadze zarówno efektywny proces odwadniania osadów ściekowych z jednoczesnym zmniejszeniem nieprzyjemnych zapachów wydzielających się z osadów podczas tego procesu, przyjmuje się i zaleca do aplikacji dawkowanie jednoczesne obydwu odczynników, tj. fl okulanta Praestol 855BS 50% oraz olejku eterycznego z pomarańczy także 50% udziału objętościowego.
Rocznik
Strony
3--18
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
autor
  • Koszalin University of Technology, Poland Faculty of Civil Engineering, Environmental and Geodetic Sciences
autor
  • Koszalin University of Technology, Poland Faculty of Civil Engineering, Environmental and Geodetic Sciences
Bibliografia
  • [1] Abd-El-Haleem, D., Ripp, S., Zaki, S. & Sayler, G.S. (2007). Detection of nitrate/nitrite bioavailability in wastewater using a luxCDABE-based Klebsiella oxytoca bioluminescent bioreporter, Journal of Microbiology and Biotechnology, 17 (8): 1254–61.
  • [2] Ahn, J-M., Hwang, E.T., Youn, CH-H, Banu, D.L., Kim, B.CH., Niazi, J.H. & Gu, M.B. (2009). Prediction and classification of the modes of genotoxic action using bacterial biosensors specific for DNA damages, Biosensors and Bioelectronics, 25, 767–772.
  • [3] Balsiger, H.A., de la Torre, R., Lee, W.-Y. & Cox, M.B. (2010). A four-hour yeast bioassay for the direct measure of estrogenic activity in wastewater without sample extraction, concentration or sterilization, Science of the Total Environment, 15, 408, 6, 1422–1429.
  • [4] Beck, V., Pfitscher, A. & Jungbauer, A. (2005). GFP-reporter for a high throughput assay to monitor estrogenic compounds, Journal of Biochemical and Biophysical Methods, 64, 19–37.
  • [5] Behzadian, F., Barjeste, H., Hosseinkhani, S. & Zarei, A.R. (2011). Construction and characterization of Escherichia coli whole-cell biosensors for toluene and related compounds, Current Microbiology, 62, 2, 690–6.
  • [6] Biran, A., Ben Yoav, H., Yagur-Kroll, S., Pedahzur, R., Buchinger, S., Shacham-Diamand, Y., Reifferscheid, G. & Belkin, S. (2011). Microbial genotoxicity bioreporters based on sulA activation, Analytical and Bioanalytical Chemistry, 400, 9, 3013–24.
  • [7] Biran, A., Yagur-Kroll, S., Pedahzur, R., Buchinger, S., Reifferscheid, G., Ben Yoav, H., Shacham-Diamand, Y. & Belkin, S. (2010). Bacterial genotoxicity bioreporters, Microbial Biotechnology, 3, 4, 412–27.
  • [8] Bock Gu, M., Mitchell, R.J. & Kim, B.C. (2004). Whole-cell-based biosensors for environmental biomonitoring and application, Advances in Biochemical Engineering/Biotechnology, 87, 269–305.
  • [9] Bovee, T.F.H., Helsdingen, R.J.R, Hamers, A.R.M., Brouwer, B.A. & Nielen, M.W.F. (2011). Recombinant cell bioassay for the detection of (gluco) corticosteroids and endocrine-disrupting potencies of several environmental PCB contaminants, Analytical and Bioanalytical Chemistry, 401, 873–882.
  • [10] Chauchan A., Layton, A.C., Williams, D.E., Smartt, A.E., Ripp, S., Karpinets, T.V., Brown, S.D. & Salyer, G.S. (2011). Draft genome sequence of the polycyclic aromatic hydrocarbon-degrading genetically engineered bioluminescent bioreporter Pseudomonas fluorescens HK44, Journal of Bacteriology, 193, 18, 5009–5010 (2011).
  • [11] Cheng, V.A. & van Dyk, T.K. (2004). Stress responsive bacteria: biosensors as environmental monitors, Advances in Microbial Physiology, 49, 131–74.
  • [12] Chobtang, J., de Boer, I.J.M., Hoogenboom, R.L.A.P., Haasnoot, W., Kijlstra & Meerburg, A.B.G. (2011). The need and potential of biosensors to detect dioxins and dioxin-like polychlorinated biphenyls along the milk, eggs and meat food chain, Sensors, 11, 11692–11716.
  • [13] de Las Heras, A. & de Lorenzo, V. (2012). Engineering whole-cell biosensors with no antibiotic markers for monitoring aromatic compounds in the environment, Methods in Molecular Biology, 834, 261–81.
  • [14] Errampalli, D., Leung, K., Cassidy, M.B., Kostrzyńska, M., Blears, M., Lee, H. & Trevors, J.T. (1999). Applications of green fluorescent protein as a molecular marker in environmental microorganism, Journal of Microbiological Methods, 35, 187–199.
  • [15] Elad, T., Almog, R., Yagur-Kroll, S., Levkov, K., Melamed, S., Shacham-Diamand, Y. & Belkin, S. (2011). Online monitoring of water toxicity by use of bioluminescent reporter bacterial biochips, Environmental Science & Technology, 1, 45, 19, 8536–44.
  • [16] Gierach, I., Shapero, K., Eyster, T.W. & Wood, D.W. (2011), Bacterial biosensors for evaluating potential impacts of estrogenic endocrine disrupting compounds in multiple species, Environmental Toxicology, 4. Doi: 10. 1002/tox.20708.
  • [17] Girotti, S., Feeri, E.N., Fumo, M.G. & Maiolini, E. (2008), Monitoring of environmental pollutants by bioluminescent bacteria, Analytica Chimica Acta, 608, 2–29.
  • [18] Hendriks, G., Atallah, M., Raamsman, M., Morolli, B., van der Putten, H., Jaadar, H. Tijedens, I., Esveldt- -van Lange, R., Mullenders, L., van de Water, B. & Vrieling, H. (2011). Sensitive DsRed fl uorescence- -based reporter cell systems for genotoxicity and oxidative stress assessment, Mutation Research, 709–710, 49–59.
  • [19] Klimek, B., Fiałkowska, E., Fyda, J., Kocerba-Soroka, W., Pajdak-Stós, A. & Sobczyk, Ł. (2013). The Toxicity of Aluminium Salts to Lecane Inermis Rotifers: Are Chemical and Biological Methods Used to Overcome Activated Sludge Bulking Mutually Exclusive?, Archives of Environmental Protection 39, 3, 127–138.
  • [20] Korzekwa, K., Gołaś, J. & Harnisz, M. (2012). Evaluation of anthropogenic pollution in river water based on the genetic diversity of Aeromonas hydrophila, Archives of Environmental Protection, 38, 3, 41–50.
  • [21] Lei, Y., Chen, W. & Mulchandani, A. (2006). Microbial biosensors, Analytica Chimica Acta, 568, 200–210.
  • [22] Mariner, K.R., Ooi, N., Roebuck, D., O’Neill, A.J. & Chopra, I. (2011). Further characterization of Bacillus subtilis antibiotic biosensors and their use for antibacterial mode-of-action studies, Antimicrobial Agents and Chemotherpy, 55, 4, 1784–1786.
  • [23] Matejczyk, M. (2004). Bacterial biosensors, Postępy Mikrobiologii, 2, 43, 155–165 (in Polish).
  • [24] Matejczyk, M. (2010). The potential of application of microbial biosensors, Postępy Mikrobiologii, 49, 4, 297–304 (in Polish).
  • [25] Matejczyk, M. & Rosochacki, S.J. (2006). Application of plasmid-borne green fluorescent protein-based bacterial biosensors for benzene and its selected derivatives detection in water ecosystems, Polish Journal of Environmental Studies, 15, 5D, 703–707.
  • [26] Matejczyk, M. & Rosochacki, S.J. (2007). Gfp gene as a fluorescence tool for genes’ expression analysis and biosensors construction, Biotechnology, 1, 76, 53–62 (in Polish).
  • [27] Matejczyk, M. &. Zalewski, P. (2011). Endocrine disrupting compounds and its biological activity, Kosmos, 60, 1–2, 17–32 (in Polish),
  • [28] Ng, S.P., Palombo, E.A. & Bhave, M. (2012). Identification of a copper-responsive promoter and development of a copper biosensor in the soil bacterium, Achromobacter sp. AO22, World Journal of Microbiology and Biotechnology, 28, 5, 2221–8.
  • [29] Podgórska, B. & Węgrzyn, G.A. (2006). Modified Vibrio harveyi mutagenicity assay based on bioluminescence induction, Letters in Applied Microbiology, 42, 6, 578–582.
  • [30] Podgórska, B., Królicka, A., Lojkowska, E. & Węgrzyn, G. (2008). Rapid detection of mutagens accumulated in plant tissues using a novel Vibrio harveyi mutagenicity assay, Ecotoxicology and Environmental Safety, 70, 2, 231–235.
  • [31] Reder-Christ, K. & Bendas, G. (2011). Biosensor applications in the field of antibiotic research – a review of recent development, Sensors, 11, 9450–9466.
  • [32] Reifferscheid, G. & Buchinger, S. (2010). Cell-based genotoxicity testing: genetically modified and genetically engineered bacteria in environmental genotoxicology, Advances in Biochemical Engineering/Biotechnology, 118, 85–111.
  • [33] Robbens, J., Dardenne, F., Devriese, L., de Coen, W. & Blust, R. (2010). Escherichia coli as a bioreporter in ecotoxicology, Applied Microbiology and Biotechnology, 88, 5, 1007–25.
  • [34] Rosochacki S.J. & Matejczyk, M. (2002). Green fluorescent protein as a molecular marker in microbiology, Acta microbiologica Polonica, 51, 205–216.
  • [35] Rybtke, M.T., Borlee, B.R., Murakami, K., Irie, Y., Nielsen, T.E., Givskov, M., Parsek, M.R. & Tolker- -Nielsen, T. (2012) A fl uorescence-based reporter of cyclic di-GMP levels in Pseudomonas aeruginosa, Applied and Environmental Microbiology, 11. PMID: 22582064.
  • [36] Shin, D., Moon, H.S., Lin, C.C., Barkay, T. & Nam, K. (2011). Use of reporter-gene based bacteria to quantify phenanthrene biodegradation and toxicity in soil, Environmental Pollution, 159, 2, 509–14.
  • [37] Shin, H.J. (2011). Genetically engineered microbial biosensors for in situ monitoring of environmental pollution, Applied Microbiology and Biotechnology, 89, 4, 867–77.
  • [38] Silva-Rocha, R., de Lorenzo, V. (2012). A GFP-lacZ bicistronic reporter system for promoter analysis in environmental gram-negative bacteria, PloS ONE, 7, 4, e34675. Doi: 10.1371/journal.pone.oo34675.
  • [39] Song, W., Pasco, N., Gooneratne, R. & Weld, R.J (2012). Comparison of three genetically modified Escherichia coli biosensor strains for amperometric tetracycline measurement, Biosensors and Bioelectronics, 15, 35, 1, 69–74.
  • [40] Struss, A.K., Pasini, P., Flomenhoft, D., Shashidhar, H. & Daunert, S. (2012). Investigating the effect of antibiotics on quorum sensing with whole-cell biosensing system, Analitycal and Bioanalitycal Chemistry, 402, 10, 3227–36.
  • [41] Svobodová, K. & Cajthaml, T. (2010). New in vitro reporter gene bioassays for screening of hormonal active compounds in the environment, Applied Microbiology and Biotechnology, 88, 839–847.
  • [42] Tecon, R., Binggeli, O. & van der Meer, J.R. (2009). Double-tagged fluorescent bacterial bioreporter for the study of polycyclic aromatic hydrocarbon diffusion and bioavailability, Environmental Microbiology, 11, 9, 2271–83.
  • [43] Urban, A., Eckermann, S., Fast, B., Metzger, S., Gehling, M., Ziegelbauer, K., Rübsamen-Waigmann, H. & Freiberg, Ch. (2007). Novel whole-cell antibiotic biosensors for compound discovery, Applied and Environmental Microbiology,73, 20, 6436–6443.
  • [44] Wasterink, W.M.A., Stevenson, J.C.R., Lauwers, A., Griffioen, G., Horbach, G.J. & Schoonen, W.G.E.J. (2009). Evaluation of the Vitotox™ and RadarScreen assays for the rapid assessment of genotoxicity in the early research phase of drug development, Mutation Research, 676, 113–130.
  • [45] Woutersen, M., Belkin, S., Brouwer, B., van Wezel, A.P. & Heringa, M.B. (2011). Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources, Analitycal and Bioanalitycal Chemistry, 400, 915–929.
  • [46] Yagi, K. (2007). Applications of whole-cell bacterial sensors in biotechnology and environmental science, Applied Microbiology and Biotechnology, 73, 1251–1258.
  • [47] Yagur-Kroll, S., Bilic, B. & Belkin, S. (2010). Strategies for enhancing bioluminescent bacterial sensor performance by promoter region manipulation, Microbial Biotechnology, 3, 3, 300–10.
  • [48] Yu, Q., Li, Y., Ma, A., Liu, W., Wang, H. & Zhuang, G. (2011). An efficient design strategy for a whole- -cell biosensor based on engineered ribosome binding sequences, Analitycal and Bioanalitycal Chemistry, 401, 9, 2891–8.
  • [49] Zhao, B., Baston, D.S., Khan, E., Sorrentino, C. & Denison, M.S. (2010). Enhancing the response of CALUX and CAFLUX cell bioassays for quantitative detection of dioxin-like compounds, Science China Chemistry, 53, 5, 1010–1016.
  • [50] Xu, T., Close, D.M., Sayler, G.S. & Ripp, S. (2013). Genetically modified whole-cell bioreporters for environmental assessment, Ecological Indicators, 28, 125–141.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bef68e5a-91b0-4f19-b83c-2b3026a832ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.