Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: Study explored the effects of ageing, induced through artificial weathering, on the physical, mechanical, and structural properties of polypropylene nonwovens produced using the spun-bonded technique and modified with iron stearate as a photodegradant. Design/methodology/approach: Key parameters such as mass per unit area, apparent density, air permeability, tensile strength, chemical structure, and crystallinity index were analysed to evaluate the matematerials’behaviour during ageing and assess their potential as agrotextiles. Findings: The results revealed that initial ageing stages led to partial structural reorganisation, manifested by increased crystallinity and improved mechanical properties. However, extended ageing caused significant deterioration in these properties due to progressive structural degradation. Reduced crystallinity, decreased tensile strength, lower apparent density, and increased air permeability are correlated with the crystalline phase and the breakdown of polymer structures. Research limitations/implications: Despite the degradation, PP nonwovens demonstrated properties that are favourable for agricultural applications. Their high initial tensile strength and structural stability make them effective for soil protection, moisture retention, and weed suppression. Practical implications: The gradual degradation under environmental conditions offers an advantage by eliminating the need for manual removal at the end of the season, facilitating microbial breakdown, and reducing long-term environmental impact. Originality/value: Analysis allowed for the behaviour assessment during ageing and for concluding their durability and potential application. PP-based nonwovens modified with photodegradants balance functional durability and environmental friendliness. However, optimising their composition and properties to meet specific requirements is essential to ensure effective performance and sustainable biodegradation after use.
Wydawca
Rocznik
Tom
Strony
49--60
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
autor
- Textile Research Institute, Lodz University of Technology, Zeromskiego str. 116, 90-924 Lodz, Poland
autor
- Textile Research Institute, Lodz University of Technology, Zeromskiego str. 116, 90-924 Lodz, Poland
autor
- Textile Research Institute, Lodz University of Technology, Zeromskiego str. 116, 90-924 Lodz, Poland
autor
- Textile Research Institute, Lodz University of Technology, Zeromskiego str. 116, 90-924 Lodz, Poland
Bibliografia
- [1] C. Maraveas, Production of Sustainable and Biodegradable Polymers from Agricultural Waste, Polymers 12/5 (2020) 1127. DOI: https://doi.org/10.3390/polym12051127
- [2] M.S. Singhvi, S.S. Zinjarde, D.V. Gokhale, Polylactic acid: synthesis and biomedical applications, Journal of Applied Microbiology 127/6 (2019) 1612-1626. DOI: https://doi.org/10.1111/jam.14290
- [3] A. Marra, C. Silvestre, D. Duraccio, S. Cimmino, Polylactic acid/zinc oxide biocomposite films for food packaging application, International Journal of Biological Macromolecules 88 (2016) 254-262. DOI: https://doi.org/10.1016/j.ijbiomac.2016.03.039
- [4] R.E. Drumright, P.R. Gruber, D.E. Henton, Polylactic Acid Technology, Advanced Materials 12/23 (2000) 1841-1846. DOI: https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
- [5] M. Gieldowska, M. Puchalski, G. Szparaga, I. Krucińska, Investigation of the influence of PLA molecular and supramolecular structure on the kinetics of thermalsupported hydrolytic degradation of wet spinning fibres, Materials 13/9 (2020) 2111. DOI: https://doi.org/10.3390/ma13092111
- [6] S. Kliem, M. Kreutzbruck, C. Bonten, Review on the Biological Degradation of Polymers in Various Environments, Materials 13/20 (2020) 4586. DOI: https://doi.org/10.3390/ma13204586
- [7] P. Bucki, P. Siwek, I. Domagała-Świątkiewicz, M. Puchalski, Effect of Agri-Environmental Conditions on the Degradation of Spunbonded Polypropylene Nonwoven with a Photoactivator in Mulched Organically Managed Zucchini, Fibres and Textiles in Eastern Europe 26/2(128) (2018) 55-60. DOI: https://doi.org/10.5604/01.3001.0011.5739
- [8] V. Dorugade, M. Taye, S.A. Qureshi, T. Agazie, B. Seyoum, B. Abebe, S. Komarabathina, Agrotextiles: Important Characteristics of Fibres and Their Applications – a Review, Journal of Natural Fibers 20/2 (2023) 2211290. DOI: https://doi.org/10.1080/15440478.2023.2211290
- [9] E. Indarti, Marwan, W.D. Wan Rosli, Morphological and optical properties of polylactic acid bionano-composite film reinforced with oil palm empty fruit bunch nanocrystalline cellulose, Journal of Physics: Conference Series 1295/1 (2019) 012053. DOI: https://doi.org/10.1088/1742-6596/1295/1/012053
- [10] K.H. Dehnou, G.S. Norouzi, M. Majidipour, A review: Studying the effect of graphene nanoparticles on mechanical, physical and thermal properties of polylactic acid polymer, RSC Advances 13/6 (2023) 3976-4006. DOI: https://doi.org/10.1039/D2RA07011A
- [11] A.H. Setiawan, F. Aulia, Development of more friendly food packaging materials based on polypropylene through blending with polylactic acid, AIP Conference Proceedings 1803 (2017) 020039. DOI: https://doi.org/10.1063/1.4973166
- [12] G. H. d. A. Barbalho, J.J.d.S. Nascimento, L.B.d. Silva, R.S. Gomez, D.O.d. Farias, D.D.S. Diniz, R.S. Santos, M.J.d. Figueiredo, A.G.B.d. Lima, Bio-Polyethylene Composites Based on Sugar Cane and Curauá Fiber: An Experimental Study, Polymers 15/6 (2023) 1369. DOI: https://doi.org/10.3390/polym15061369
- [13] I. Velghe, B. Buffel, V. Vandeginste, W. Thielemans, F. Desplentere, Review on the Degradation of Poly(lactic acid) during Melt Processing, Polymers 15/9 (2023) 2047. DOI: https://doi.org/10.3390/polym15092047
- [14] Z. Cai, M. Li, Z. Zhu, X. Wang, Y. Huang, T. Li, H. Gong, M. Yan, Biological Degradation of Plastics and Microplastics: A Recent Perspective on Associated Mechanisms and Influencing Factors, Microorganisms 11/7 (2023) 1661. DOI: https://doi.org/10.3390/microorganisms11071661
- [15] S. Habib, A. Iruthayam, M.Y. Abd Shukor, S.A. Alias, J. Smykla, N.A. Yasid, Biodeterioration of Untreated Polypropylene Microplastic Particles by Antarctic Bacteria, Polymers 12/11 (2020) 2616. DOI: https://doi.org/10.3390/polym12112616
- [16] A.S. Santos, P.J.T. Ferreira, T. Maloney, Bio-based materials for nonwovens, Cellulose 28/14 (2021) 8939-8969. DOI: https://doi.org/10.1007/s10570-021-04125-w
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43ed08f5-503a-4b00-acfa-bb1da147a10b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.