Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The most important tendencies in the development of modern machine tools are pointed out, including the improvement of their design and development of error compensation methods. An overview of the most popular and useful error compensation methods for machine tools is presented. Based on examples, the effectiveness and limitations of each method are discussed. An integrated 5-axis machine tool behaviour model is presented, which assists in the elaboration of an error model required for the compensation purposes.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
5--25
Opis fizyczny
Bibliogr.38 poz., tab., rys.
Twórcy
autor
- Institute of Production Engineering and Automation, Wroclaw University of Technology, Poland
autor
- Institute of Production Engineering and Automation, Wroclaw University of Technology, Poland
autor
- Institute of Production Engineering and Automation, Wroclaw University of Technology, Poland
Bibliografia
- [1] New compensation method improves machine tool accuracy, http://www.designnews.com
- [2] BRETSCHNEIDER J., 2008, Caution. With VCS machine tool precision can be increased, Siemens Industry Sector.
- [3] CEMPEL C., TABASZEWSKI M., 2007, Zastosowanie teorii szarych systemów do modelowania i prognozowania w diagnostyce maszyn. Diagnostyka 2 (42), 11-18 (in Polish).
- [4] CHEN J. S., 1996, Neural network-based modeling and error compensation of thermally-induced spindle errors, The International Journal of Advanced Manufacturing Technology, 12, 303-308.
- [5] FUNG E. H. K., CHAN J. C. K., 2000, ARX modelling and compensation of roundness errors in taper turning, The International Journal of Advanced Manufacturing Technology, 16, 404-412.
- [6] HANSEN H. N., CARMEIRO K., HAITJEMAN, DE CHIFFRE L., 2006, Dimensional micro and nano metrology, CIRP Annals-Manufacturing Technology, 55/2, 721-744.
- [7] HSU Y. Y., WANG S. S, 2007, A new compensation method for geometry errors of five-axis machine tools, International Journal of Machine Tools & Manufacture, 47/2, 352–360.
- [8] JĘDRZEJEWSKI J., KWAŚNY W., 2010, Modelling of angular contact ball bearings and axial displacements for high-speed spindles, CIRP Annals-Manufacturing Technology, 59/1, 377-382.
- [9] JĘDRZEJEWSKI J., MODRZYCKI W., 1998, Improving machine tool accuracy using intelligent supervision model, CIRP International Seminar on Intelligent Computation in Manufacturing Engineering, Capri, 465-470.
- [10] JĘDRZEJEWSKI J., MODRZYCKI W., 2005, Numerical analyses and compensation of HSC machine tool thermal displacements, 7th International Conference and Exhibition on Laser Metrology, Machine Tool, CMM and Robotic Performance. LAMDAMAP, Cranfield, 268-275.
- [11] JĘDRZEJEWSKI J., MODRZYCKI W., 2007, Compensation of thermal displacements of high-speed precision machine tools, Journal of Machine Engineering, 7/1, 108-114.
- [12] LEE D. S., CHOI J. Y., CHOI D. H., 2003, ICA based thermal source extraction and thermal distortion compensation method for a machine tool, International Journal of Machine Tools & Manufacture, 43/6, 589–597.
- [13] LEE J. H., LEE J. H., YANG S. H., 2001, Thermal error modeling of horizontal machining center using Fuzzy Logic Strategy, Journal of Manufacturing Processes, 3/2, 120-127.
- [14] LEI W. T., HSU Y. Y., 2002, Accuracy test of five-axis CNC machine tools with 3D probe-ball, part II: errors estimation, International Journal of Machine Tools & Manufacture, 42/10, 1163-1170.
- [15] LEI W. T., HSU Y. Y., 2002, Accuracy test of five-axis CNC machine tools with 3D probe-ball, part I: design and modeling, International Journal of Machine Tools & Manufacture, 42/10, 1153-1162.
- [16] LO C.H., 1994, Real-time error compensation on machine tools through optimal thermal error modelling, PhD dissertation, University of Michigan.
- [17] KUMAR B, KUMAR A., 2003, Analysis of geometric errors associated with five-axis machining center in improving the quality of cam profile, International Journal of Machine Tools & Manufacture, 43/6, 629–636.
- [18] MARCHELEK K., 2007, Projektowanie systemu obrabiarka - proces skrawania odpornego na drgania samowzbudne. Politechnika Poznańska (in Polish).
- [19] Materiały firmy Okuma Corporation, 1998, Method for compensating a component of a machine tool for displacement caused by heat, United States Patent, Patent Number: 5975112.
- [20] MEKID S., 2009, Introduction to precision machine design and error assessment, CRC Press Taylor & Francis Group, Jędrzejewski J., Capture 3, 75-127.
- [21] MODRZYCKI W., 2008, Identyfikacja i kompensacja błędów obrabiarek, InŜynieria Maszyn, 13, 3-4, 91-100 (in Polish).
- [22] MODRZYCKI W., GIM T., 2007, Error compensation VMD 450 machining centre 20000 rpm, Report for Doosan Infracore.
- [23] MODRZYCKI W., 1996, Überwachung und Kompensation thermisch bedingter Verformungen an Werkzeugmaschinen mit Hilfe von neuronalen Netzen und Regressionsanalyse, MATAR Conference, Praha, 132- 138.
- [24] MODRZYCKI W., 2002, Machine tools thermal deformations - modelling and analyzing, International Intensive Course on Machine Tool and New Machining Technology. Changwon National University, Korea, 31-44.
- [25] MODRZYCKI W., 2004, Kierunki rozwoju kompensacji błędów termicznych w obrabiarkach, InŜynieria Maszyn, 9/1, 57-65 (in Polish).
- [26] PAHK H. J., LEE S. W., 2002, Thermal error measurement and real time compensation system for the CNC machine tools incorporating the spindle thermal error and the feed axis thermal error, The International Journal of Advanced Manufacturing Technology, 20/7, 487–494.
- [27] Podstawy logiki rozmytej. Instytut Sterowania i Elektroniki Przemysłowej Politechniki Warszawskiej http://www.isep.pw.edu.pl/ZakladNapedu/dyplomy/fuzzy/podstawy_FL.htm (in Polish).
- [28] RAMESH R., MANNAN M. A., POO A. N., 2002, Support vector machines model for classification of thermal error in machine tools, The International Journal of Advanced Manufacturing Technology, 20/2, 114–120.
- [29] RAMESH R., MANNAN M. A., POO A. N., 2000, Error compensation in machine tools – a review, part I: geometric, cutting-force induced and fixture-dependent errors, International Journal of Machine Tools & Manufacture, 40/9, 1235–1256.
- [30] SCHWENKE H., KNAPP W., HAITJEMA H., WECKENMANN A., SCHMITT R., DELBRESSINE F., 2008, Geometric error measurement and compensation of machines—An update, CIRP Annals-Manufacturing Technology, 57/2, 660–675.
- [31] SENDA H., SATO R., MORIWAKI T., 2005, Estimation of thermal displacement of machine tool spindles for mass production, Research & Development, OKUMA Corporation, No. 04-1289 147-152.
- [32] TUREK P., MODRZYCKI W., JĘDRZEJEWSKI J., 2010, Analiza metod kompensacji błędów obrabiarek, InŜynieria Maszyn, 13, 1/2, 130-149 (in Polish).
- [33] WANG K. C., 2006, Thermal error modeling of a machining center using grey system theory and adaptive network - based fuzzy inference system. Cybernetics and Intelligent Systems, IEEE Conference.
- [34] WANG K. C., 2006, Thermal error modeling of a machining center using grey system theory and HGA-trained neutral. Cybernetics and Intelligent Systems, IEEE Conference.
- [35] WU S. M., NI J., 1989, Precision machining without precise machinery, CIRP Annals-Manufacturing Technology, 38/1, 533-536.
- [36] WU H., LI G., SHI D., ZHANG C., 2006, Fuzzy Logic thermal error compensation for computer numerical control noncircular turning system, ICARCV, 10.1109.
- [37] YANG H., NI J., 200,5 Adaptive model estimation of machine tool thermal errors based on recursive dynamic modelling strategy, Int. Journal of Machine Tools and Manufacture 45, 1 – II.
- [38] YUAN J., NI J., 1998, The real-time error compensation technique for CNC machining system, Mechatronics, 8/4, 359-380.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8823716c-580b-404e-adb2-86a9e908aa06