Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The processing of waste cooking oils (WCO) is a complex process that heavily depends on their chemical and physical properties. The work described in this article includes research on the processing of WCO samples using transesterification methods. An automated reactor system Matrix9 HAAS was used to perform process studies and FT-IR measurements. Transesterification of oils in the presence of KOH might be directly applied as the optimal one for oils with a low acid number, while for oils with a higher acid number an additional esterification step is advisable in the presence of an acid catalyst or under conditions of high temperature and pressure.
Czasopismo
Rocznik
Tom
Strony
1--10
Opis fizyczny
Bibliogr. 34 poz., fot., rys., tab., wykr., wz.
Twórcy
autor
- R&D Department HAAS, Poznan, Poland
autor
- R&D Department HAAS, Poznan, Poland
autor
- R&D Department HAAS, Poznan, Poland
autor
- R&D Department HAAS, Poznan, Poland
autor
- R&D Department HAAS, Poznan, Poland
autor
- Research and Innovation Centre Pro-Akademia, Poland
autor
- Poznan University of Technology, Poznan, Poland
autor
- Opole University of Technology Opole, Poland
Bibliografia
- 1. Harpers, N., Wen, M., Miller, P., Hangx, S. & Busch, A. (2023). The Harpers THMC flow bench: A triaxial multi-reactor setup for the investigation of long-term coupled thermo-hydro-mechanical-chemical fluid-rock interaction. Rev. Sci. Instrum. 94, 095112. DOI: 10.1063/5.0160906.
- 2. Westphal, H., Schmidt, S., Lama, S., Polack, M., Weise, C., Oestereich, T., Warias, R., Gulder, T. & Belder, D. (2024). Development of an automated platform for monitoring micro-fluidic reactors through multi-reactor integration and online (chip-) LC/MS-detection. React. Chem. Eng. 9, 1739. DOI: 10.1039/d4re00004h.
- 3. Allwardt, A., Holzmüller-Laue, S., Wendler, C. & Stoll, N. (2008). A high parallel reaction system for efficient catalyst research. Catal. Today 137 (1), 11–16. DOI: 10.1016/j. cattod.2008.03.012.
- 4. Li, Q., Gong, S., Yan, J., Hu, H., Shu, X., Tong, H., Cai, Z. (2020). Synthesis and Kinetics of Hydrogenated Rosin Dodecyl Ester as an Environmentally Friendly Plasticizer. J. Renew. Mater. 8 (3), 289–299. DOI: 10.32604/jrm.2020.08897.
- 5. Kalmykova, Y., Sadagopan, M. & Rosado, L. (2018). Circular economy – From review of theories and practices to development of implementation tools. Resour. Conserv. Recycl. 135, 190–20. DOI: 10.1016/j.resconrec.2017.10.034.
- 6. Zhang, Y. (2003). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour. Technol. 89 (1), 1–16. DOI:10.1016/s0960-8524(03)00040-3.
- 7. Kerr, R. A. (1998). The Next Oil Crisis Looms Large-and Perhaps Close. Science 281 (5380), 1128–1131. DOI: 10.1126/science.281.5380.1128.
- 8. Wang, Y., Pengzhan, L. S. O. & Zhang, Z. (2007). Preparation of biodiesel from waste cooking oil via two-step catalyzed process. Energ. Convers. Manage. 48 (1), 184–188. DOI:10.1016/j. enconman.2006.04.016.
- 9. Liu, C., Provatas, A. A. & Parnas, R. S. (2023). Desulfurization of biodiesel produced from waste fats, oils and grease using β-cyclodextrin. Sep. Purif. Technol. 305, 122417. DOI: 10.1016/j.seppur.2022.122417.
- 10. Fadhil, A. B. & Mohammed, H. M. (2018). Co-solvent transesterification of bitter almond oil into biodiesel: optimization of variables and characterization of biodiesel. Transport 33 (3), 686-698. DOI: 10.3846/16484142.2018.1457568.
- 11. Al-Tikrity, E. T. B., Fadhil, A .B. & Ibraheem, K. K. (2017). Biodiesel production from bitter almond oil as new non-edible oil feedstock. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (7), 649–656, DOI: 10.1080/15567036.2016.1243172.
- 12. Altikriti, E. T., Fadhil, A. B. & Dheyab, M. M. (2015). Two-step Base Catalyzed Transesterification of Chicken Fat: Optimization of Parameters, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37 (17), 1861–1866, DOI: 10.1080/15567036.2012.654442.
- 13. Arjun, B., Chhetri, K., Watts, Ch. & Islam, M. R. (2008). Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production. Energies 1 (1), 3–18. DOI: 10.3390/en1010003.
- 14. Moazeni, F., Chen, Y. C. & Zhang, G. (2019). Enzymatic transesterification for biodiesel production from used cooking oil, a review. J. Clean. Prod. 216, 117–128. DOI: 10.1016/j. jclepro.2019.01.181.
- 15. Šabeder, S., Habulin, M. & Knez, Ž. (2006). Lipasecatalyzed synthesis of fatty acid fructose esters. J. Food Eng. 77 (4), 880–886. DOI: 10.1016/j.jfoodeng.2005.08.016.
- 16. Brahma, S., Nath, B., Basumatary, B., Das, B., Saikia, P., Patir, K. & Basumatary, S. (2022). Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production. Chem. Eng. J. Adv. 10, 100284. DOI: 10.1016/j. ceja.2022.100284.
- 17. Santori, G., Di Nicola, G., Moglie, M. & Polonara, F. (2012). A review analyzing the industrial biodiesel production practice starting from vegetable oil refining. Appl. Energy 92, 109–132. DOI: 10.1016/j.apenergy.2011.10.031.
- 18. Christopher, L. P., Kumar, H. & Zambare, V. P. (2014). Enzymatic biodiesel: Challenges and opportunities. Appl. Energy 119, 497–520. DOI: 10.1016/j.apenergy.2014.01.017.
- 19. Budžaki, S., Miljić, G., Tišma, M., Sundaram, S. & Hessel, V. (2017). Is there a future for enzymatic biodiesel industrial production in microreactors? Appl. Energy 201, 124–134. DOI: 10.1016/j.apenergy.2017.05.062.
- 20. Atadashi, I. M., Aroua, M. K., Abdul Aziz, A .R. & Sulaiman, N. M. N (2012). Production of biodiesel using high free fatty acid feedstocks. Renew. Sustain. Energy Rev. 16 (5), 3275–3285. DOI: 10.1016/j.rser.2012.02.063.
- 21. Bouaid, A., Vázquez, R., Martinez, M. & Aracil, J. (2016). Effect of free fatty acids contents on biodiesel quality. Pilot plant studies. Fuel 174, 54-–62. DOI: 10.1016/j.fuel.2016.01.018.
- 22. Palanisamy, K., Idlan, M. K. & Saifudin, N. (2013). Preliminary evaluation of the effectiveness of moisture removal and energy usage in pretreatment module of waste cooking oil for biodiesel production. IOP Conf. Ser. Earth Environ. Sci. 16, 012053. DOI: 10.1088/1755-1315/16/1/012053.
- 23. Yuan, X., Liu, J., Zeng, G., Shi, J., Tong, J. & Huang, G. (2008). Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology. Renew. Energy 33, 1678–1684. DOI: 10.1016/j.renene.2007.09.007.
- 24. Sendzikiene, E., Santaraite, M. & Makareviciene, V. (2020). Lipase-Catalysed In Situ Transesterification of Waste Rapeseed Oil to Produce Diesel-Biodiesel Blends. Processes 8, 1118. DOI: 10.3390/pr8091118.
- 25. Karki, S., Sanjel, N., Poudel, J., Hyung Choi, J. & Cheon Oh, S. (2017). Supercritical Transesterification of Waste Vegetable Oil: Characteristic Comparison of Ethanol and Methanol as Solvents. Appl. Sci. 7, 632. DOI: 10.3390/app7060632.
- 26. Mowry, G. (2011). A portable, automated and environmentally friendly biodiesel processing system. Int. J. Sustain. Energy 30 (sup1), S24–S34. DOI: 10.1080/1478646X.2010.542816.
- 27. Daniyan, I., Daniyan, L., Adeodu, A. & Ale, F. (2023). Automation and Control of a Multi-feedstock Biodiesel Production Plant. IETE J. Res. 70 (5), 5081–5099. DOI: 10.1080/03772063.2023.2220285.
- 28. Soni, H., Bhattu, M., Verma, M., Kaur, M., Al-Kahtani, A. A., Lone, I. H., Yadav, A. N. & Ubaidullah, M. (2024). From kitchen to cosmetics: Study on the physicochemical and antioxidant properties of waste cooking oil-derived soap. J. King Saud Univ. Sci. 36 (10), 103483. DOI: 10.1016/j.jksus.2024.103483.
- 29. Teng, Y., Stewart, S. G., Hai, Y.-W., Li, X., Banwell, M. G. & Lan, P. (2020). Sucrose fatty acid esters: synthesis, emulsifying capacities, biological activities and structure-property profiles. Crit. Rev. Food Sci. Nutr. 61 (19), 3297–3317. DOI: 10.1080/10408398.2020.1798346.
- 30. Karmakar, G., Ghosh, P. & Brajendra K. Sharma, B. K. (2017). Chemically Modifying Vegetable Oils to Prepare Green Lubricants. Lubricants, 5 (4), 44. DOI: 10.3390/lubricants5040044.
- 31. Salmia, B., Muda, Z. C., Alam, M. A., Sidek, L. M. & Hidayah, B. (2013). Used cooking oil as a green chemical admixture in concrete. IOP Conf. Ser.: Earth Environ. Sci. 16, 012077. DOI: 10.1088/1755-1315/16/1/012077.
- 32. Cárdenas, J., Orjuela, A., Sánchez, D. L., Narváez, P. C., Katryniok, B. & Clark, J. (2021). Pre-treatment of used cooking oils for the production of green chemicals: A review. J. Clean. Prod. 289, 125129. DOI: 10.1016/j.jclepro.2020.125129.
- 33. Abidin, S. Z., Haigh, K. F., Saha, B. (2012). Esterification of Free Fatty Acids in Used Cooking Oil Using Ion-Exchange Resins as Catalysts: An Efficient Pretreatment Method for Biodiesel Feedstock. Ind. Eng. Chem. Res. 2, 39.
- 34. dos Reis, S. C. M., Lachter, E. R., Nascimento R. S. V., Rodrigues Jr, J.A., Reid, M.G., (2005) Transesterification of Brazilian Vegetable Oils with Methanol over Ion-Exchange Resins. JAOCS V82, I 9, 661. DOI: 10.1007/s11746-005-1125-y.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-277f3fc1-c1bd-4ffb-a674-3373c394e393
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.