Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The perception of skylight polarization in the ultraviolet (UV) by some species is surprising, because the degree of polarization (DoP) of light from the clear sky is considerably lower in the UV than in the visible spectral range. This is the so-called “ultraviolet paradox of the perception of skylight polarization (UV-sky-pol paradox)”. To explain the “UV-sky-pol” paradox, we analyzed the polarization retention characteristics of parallel polarized light transmits in altostratus at multiple wavelengths. According to the polarization sensitive bands of flies, honeybee, scarab beetles and spider, the study wavelength was set at 350 nm, and the wavelength of control group was set at 400, 450, 500, 550 and 600 nm, respectively. Then, we used the polarized light Monte Carlo method to simulate the forward transmission of 100000 parallel polarization photons in altostratus. Calculation results show that the polarization retention characteristics are excellent at the 350 nm wavelength. Finally, we analyzed the transmission characteristics of parallel polarized light passes through a droplet at 0°–15° forward scattering angle. The analysis results show that there have been significant polarization retention channels in the UV band around 350 nm. This study can help to elucidate the “UV-sky-pol” paradox.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
129--134
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
- College of Transportation, Ludong University, Yantai 264025, China
autor
- Shandong Business Institute, Yantai, 264670, Shandong, China
autor
- College of Transportation, Ludong University, Yantai 264025, China
autor
- College of Transportation, Ludong University, Yantai 264025, China
Bibliografia
- [1] NATION J.N., Insect Physiology and Biochemistry, CRC Press, 2022.
- [2] LERNER A., SHASHAR N., Polarized Light and Polarization Vision in Animal Sciences, Springer, Berlin, 2014.
- [3] WEIR P.W., DICKINSON M.H., Flying Drosophila orient to sky polarization, Current Biology 22(1), 2012: 21-27. https://doi.org/10.1016/j.cub.2011.11.026
- [4] ROSSEL S., WEHNER R., Polarization vision in bees, Nature 323(6084), 1986: 128-131. https://doi.org/ 10.1038/323128a0
- [5] WEHNER R., Desert ant navigation: how miniature brains solve complex tasks, Journal of Comparative Physiology A 189(8), 2003: 579-588. https://doi.org/10.1007/s00359-003-0431-1
- [6] HENSGEN R., ZITTRELL F., PFEIFFER K., HOMBERG U., Performance of polarization-sensitive neurons of the locust central complex at different degrees of polarization, Journal of Comparative Physiology A 208(3), 2022: 387-403. https://doi.org/10.1007/s00359-022-01545-2
- [7] DACKE M., NORDSTRÖM P., SCHOLTZ C., WARRANT E., A specialized dorsal rim area for polarized light detection in the compound eye of the scarab beetle Pachysoma striatum, Journal of Comparative Physiology A 188(3), 2022: 211-216. https://doi.org/10.1007/s00359-002-0295-9
- [8] MUELLER K.P., LABHART T., Polarizing optics in a spider eye, Journal of Comparative Physiology A 196, 2010: 335-348. https://doi.org/10.1007/s00359-010-0516-6
- [9] BARTA A., HORVÁTH G., Why is it advantageous for animals to detect celestial polarization in the ultraviolet? Skylight polarization under clouds and canopies is strongest in the UV, Journal of Theoretical Biology 226(4), 2004: 429-437. https://doi.org/10.1016/j.jtbi.2003.09.017
- [10] WANG X., GAO J., FAN Z., Empirical corroboration of an earlier theoretical resolution to the UV paradox of insect polarized skylight orientation, Naturwissenschaften 101(2), 2014: 95-103. https:// doi.org/10.1007/s00114-013-1134-2
- [11] ZHAO H., XU W., ZHANG Y., LI X., ZHANG H., XUAN J., JIA B., Polarization patterns under different sky conditions and a navigation method based on the symmetry of the AOP map of skylight, Optics Express 26(22), 2018: 28589-28603. https://doi.org/10.1364/OE.26.028589
- [12] JOHN W., Size distribution characteristics of aerosols, [In] KULKARNI P., BARON P.A., WILLEKE K. [Eds.], Aerosol Measurement: Principles, Techniques, and Applications, Third Edition, Wiley, 2011: 41-54. https://doi.org/10.1002/9781118001684.ch4
- [13] WANG L., LI C., YAO Z., ZHAO Z., HAN Z., WEI Q., Application of aircraft observations over Beijing in cloud microphysical property retrievals from CloudSat, Advances in Atmospheric Sciences 31(4), 2014: 926-937. https://doi.org/10.1007/s00376-013-3156-2
- [14] WEI L., LEI H., HU W., HUANG M., ZHANG R., ZHANG X., HOU T., LÜ Y., An analysis of the microstructure of the melting layer of a precipitating stratiform cloud at the dissipation stage, Atmosphere 13(2), 2022: 284. https://doi.org/10.3390/atmos13020284
- [15] FRALEIGH D.C., HEITMAN J.B., ROBERTSON B.A., Ultraviolet polarized light pollution and evolutionary traps for aquatic insects, Animal Behaviour 180, 2021: 239-247. https://doi.org/10.1016/ j.anbehav.2021.08.006
- [16] ZENG X., CHEN X., LI Y., QIAO X., Polarization enhancement of linearly polarized light through foggy environments at UV–NIR wavelengths, Applied Optics 60(26), 2021: 8103-8108. https://doi.org/ 10.1364/AO.431638
- [17] RAMELLA-ROMAN J.C., PRAHL S.A., JACQUES S.L., Three Monte Carlo programs of polarized light transport into scattering media: Part I, Optics Express 13(12), 2005: 4420- 4438. https://doi.org/ 10.1364/OPEX.13.004420
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-310bbb7d-c6b4-4f29-8da9-a925474ecf7b