PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Materials modelling in industrial bulk metal forming processes and process chains

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bulk metal forming processes range from processes with a single deformation step such as certain closed-die forging operations to processes with many subsequent stages such as hot rolling, ring rolling or open die forging. Modelling of these manufacturing processes requires both precise process models as well as adequate material models. Microstructure evolution by recrystallization is decisive in all of these processes since the microstructure determines the flow stress and hence the forming forces but it also influences the product properties. In this context, the propagation of variations in the processing conditions and in the material behavior are of special importance and methods for the quantification of uncertainties and their effect on model predictions are required. Such questions can be approached using models of different complexity on various scales as shown in the following examples: In closed die forging of a gear wheel from 25MoCr4 alloy the complex geometry requires a Finite Element process model which in this case is combined with a JMAK type material model. In plate rolling a simplified process model can be applied successfully. Based on the slab theory, which is enhanced for spatial resolution of shear strain using a meta model derived by FEM, this model can simulate even longer roll pass schedules within seconds and offers the possibility to combine it with numerical optimization techniques. Recrystallization of a high-manganese steel in interpass times between hot rolling passes is an example where models with spatial resolution (CP-FEM and phase field) are combined on the micro-scale to predict the recrystallization kinetics based on physically meaningful variables such as grain boundary mobility. In ring rolling the process model must include the closed-loop control system of the rolling machine to achieve a realistic prediction of the process kinematics. Feedback control loops for up to eight kinematic degrees of freedom (velocities and positions of all radial, axial and guiding rolls) have been defined using virtual sensors integrated in the simulation. Offline coupling with microstructure simulation is used to predict the final grain size and determine under which conditions static recrystallization occurs during the rolling sequence.
Wydawca
Rocznik
Strony
5--12
Opis fizyczny
Bibligr. 17 poz., rys.
Twórcy
autor
  • Institute of Metal Forming, RWTH Aachen University, Intzestrasse 10, D-52056 Aachen, Germany
autor
  • Institute of Metal Forming, RWTH Aachen University, Intzestrasse 10, D-52056 Aachen, Germany
autor
  • Institute of Metal Forming, RWTH Aachen University, Intzestrasse 10, D-52056 Aachen, Germany
autor
  • Institute of Metal Forming, RWTH Aachen University, Intzestrasse 10, D-52056 Aachen, Germany
autor
  • Institute of Metal Forming, RWTH Aachen University, Intzestrasse 10, D-52056 Aachen, Germany
autor
  • Institute of Metal Forming, RWTH Aachen University, Intzestrasse 10, D-52056 Aachen, Germany
Bibliografia
  • Forouzan, M.R., Salimi, M., Gadala, M.S., 2003, Threedimensional FE Analysis of Ring Rolling by Employing Thermal Spokes Method, International Journal of' Mech. Sciences, 45, 1975 1998.
  • Güvenc, O., Henke, T., Laschet, G., Böttger, B., Ape! M., Bambach, M., Hirt, G., 2013, Modeling of Static Recrystallization Kinetics by Coupling Crystal Plasticity FEM and Multiphase Field Calculations, Computer Methods in Materials Science, 13, 368 374.
  • Güvenc, O., Bambach, M., Hirt G., 2014, Coupling of Crystal Plasticity Finite Element and Phase Field Methods for the Prediction of SRX Kinetics, Steel Research International, 85, 999 1009.
  • Henke, T., Hirt, G., Bambach, M., 2013, Application of a Material Model to Predict Rolling Forces and Microstructure during a Hot Ring Rolling Process, Materials Science Forum, 762, 354-359.
  • Hirt, G., Seitz, J., Schwich, G., Jenkouk, V., 2014, Aktuelle Entwicklungen zur Auslegung und Optimierung von Ringwalzprozessen, 21. Umformtechnisches Kolloqium Hannover, 227-244.
  • Jenkouk, V., Hirt, G., Franzkc, M., Zhang, T., 2012, Finite Element Analysis of the Ring Rolling Process with Integrated Closed-Loop Control, CIRP Annals - Manufacturing Technology, 61(1), 267-270.
  • Kawalla, R., Schmidtchen, M., 2013, Numerical Simulation of Hot Rolling, Materials Science Forum, 762, 22-30.
  • Li, L., Yang, H., Guo, G., Sun, Z., 2008, A Control Method of Guide Rolls in 3D-FE Simulation of Ring Rolling, Journal of Material Processing Technology, 205, 99-110.
  • Lohmar, J., Bambach, M., Hirt, G., Kiefer, T., Kotliba, D., 2014a, The Precise Prediction of Rolling Forces in Heavy Plate Rolling based on Inverse Modeling Techniques, Steel Research International, 85(11), 1525-1532.
  • Lohmar, J., Seuren, S., Bambach, M., Hirt, G., 2014b, Design and Application of an Advanced Fast Rolling Model with Through Thickness Resolution for Heavy Plate Rolling, Proceedings of 2nd International Conference ICRF, eds, Guzzoni, I, Manning, M., Milan, Italy, CD.
  • Lohmar, J., Bambach, M., Hirt, G., Kiefer, T., Kotliba, D., Jochum, M., Seuren, S., 2014c, Fast and Accurate Force Prediction for High Quality Heavy Plates by a State of the Art Rolling Model Calibrated from Mill Data via Inverse Techniques, Proceedings of 1st European Steel Technology & Application Days Paris, France, CD.
  • Schwich, G., Henke, T., Seitz, J., Hirt, G., 2014, Prediction of Microstructure and Resulting Roll Forces by Application of a Material Model in a Hot Ring Rolling Process, Key Engr. Materials, 622-623.
  • Seuren, S., Seitz, L, Krämer, A., Bambach, M., Hirt, G, 2014, Accounting for Shear Deformation in Fast Models for Plate Rolling, Production Engineering, 8,17-24.
  • Sims, R. B., 1954, The Calculation of Roll Force and Torque in Hot Rolling Mills, Proceedings of the Institution of Mechanical Engineers, 168, 191-200.
  • Szeliga, D., Matuszyk, P., Kuziak, R., Pietrzyk, M., 2002, Identification of Rheological Parameters on the Basis of Various Types of Plastometric Tests, Journal of Materials Processing Technology, 125,150-154.
  • Wang, Z.W., Fan, J.P., Hu D.P., Tang, C.Y., Tsui, CP., 2010, Complete Modeling and Parameter Optimization for Virtual Ring Rolling, International Journal of Mech. Sciences, 52, 1325-1333.
  • Zhu, B., Militzer, M., 2012, 3D Phase Field Modelling of Re-crystallization in a Low-Carbon Steel, Modelling and Simulation in Materials Science and Engineering, 20, 85011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5122bf67-9b3a-4742-b6f7-ef111ed96d59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.