Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Magnetic Resonance Imaging (MRI) is modern diagnostic tool to obtain internal images of human body. Vibration and noise are major challenges inherited by the MRI since their development. The paper analyses vibration and sound signals produced from the Low-field MRI system for different scanning sequences. Results from spectral analysis revealed strong relation between the vibration and sound signal, showing scanning sequence specific peaks at multiple frequencies. The results are useful to understand the dynamic nature of vibration and sound signal from MRI to develop the attenuation strategy.
Słowa kluczowe
Rocznik
Tom
Strony
1
Opis fizyczny
Bibliogr. 39 poz., rys., fot., tab.
Twórcy
autor
- AGH University of Krakow, Poland
autor
- AGH University of Krakow, Poland
autor
- Jagiellonian University in Kraków
Bibliografia
- [1] F. Bruno, F. Arrigoni, S. Mariani, A. Splendiani, E. Di Cesare, C. Masciocchi, A. Barile, “Advanced magnetic resonance imaging (MRI) of soft tissue tumors techniques and applications,” La radiologia medica, 124, pp. 243-52, 2019. https://doi.org/10.1007/s11547-019-01035-7
- [2] R. Reda, A. Zanza, A. Mazzoni, A. Cicconetti, L. Testarelli, D. Di Nardo, “An update of the possible applications of magnetic resonance imaging (MRI) in dentistry a literature review,” Journal of imaging, vol. 7(5), pp. 75, 2021. https://doi.org/10.3390/jimaging7050075
- [3] L. Landini, L.T. Mainardi, V. Positano, A.A. Young, M. Santarelli, L. Ying, W.E. Kyriakos, A.J. den Dekker, M. Styner, Y.O. Halchenko, A. Frangi, “Advanced image processing in magnetic resonance imaging,” CRC press, Boca Raton, 2018. https://doi.org/10.1201/9781420028669
- [4] Y. hen, “MRI Applications and Research in Materials Science," Science and Technology of Engineering, Chemistry and Environmental Protection, vol. 1(5), 2024. https://doi.org/10.61173/9d34fb93
- [5] T. Kim, J. Lee, G.M. Sun, B.G. Park, H.J. Park, D.S. Choi, S.J. Ye, “ Comparison of X-ray computed tomography and magnetic resonance imaging to detect pest-infested fruits A pilot study,” Nuclear Engineering and Technology, vol. 54, no. 2, pp. 514-522, 2022. https://doi.org/10.1016/j.net.2021.07.015
- [6] S. Baek, J. Lim, J.G. Lee, M.J. McCarthy, S.M. Kim, “ Investigation of the maturity changes of cherry tomato using magnetic resonance imaging,” Applied Sciences, vol. 10, no. 15, pp. 5188, 2020. https://doi.org/10.3390/app10155188
- [7] C.L. Alves, J.S. Oliveira, A. Tannus, A.C.S.P. Tarpani, J.R. Tarpani, “Detection and imaging of damages and defects in fibre-reinforced composites by magnetic resonance technique,” Materials, vol. 14, no. 4, pp. 977, 2021. https://doi.org/10.3390/ma14040977
- [8] E. Behluli, H.M. Preuer, N. Schiefermeier-Mach, R. Hornung, M. Küchler, M. Prokopetz, “Patient-centric comparative analysis of experiences in open upright and conventional closed MRI scanners,” Radiography, vol. 30, no. 5, pp. 1258-1264, 2024. https://doi.org/10.1016/j.radi.2024.06.021
- [9] T. C. Arnold, .W. Freeman, B. Litt, J.M. Stein, “Low‐field MRI clinical promise and challenges,” Journal of Magnetic Resonance Imaging, vol. 57, no. 1, pp. 25-44, 2023. https://doi.org/10.1002/jmri.28408
- [10] J.P. Marques, F. F. Simonis, A.G. Webb, “Low‐field MRI An MR physics perspective,” Journal of magnetic resonance imaging, vol. 49, no. 6, pp. 1528-1542, 2019. https://doi.org/10.1002/jmri.26637
- [11] Y. Zhang, X. Kong, W. He, Z. Xu, “Eddy Current Characterization Using Efficient Finite Element Analysis for Z-Gradient Coils in a Low-field MRI Scanner,” IEEE Transactions on Instrumentation and Measurement, vol. 74, pp. 1-9, 2025. https://doi.org/10.1109/TIM.2025.3544743
- [12] P. Leo, A. D'Orazio, “Lorentz force and vibrations in transverse gradient coils in MRI.” International Journal of Mechanical Sciences, vol. 288, p. 110011, 2025. https://doi.org/10.1016/j.ijmecsci.2025.110011
- [13] R.A. Hedeen, W.A. Edelstein, “ Characterization and prediction of gradient acoustic noise in MR imagers,” Magn Reson Med, vol. 37, pp. 7-10, 1997. https://doi.org/10.1002/mrm.1910370103
- [14] P. Mansfield, P.M. Glover, J. Beaumont, “Sound generation in gradient coil structures for MRI,” Magn Reson Med, vol. 39, issue 4, pp. 539-550, 1998. https://doi.org/10.1002/mrm.1910390406
- [15] A. Moelker, P.A. Wielopolski, M.T. Pattynama, “Relationship Between Magnetic Field Strength and Magnetic-Resonance-Related Acoustic Noise Levels,” Mag. Reson. Mater. Phys., Biol. Med., 16(1), pp. 52-55, 2003. https://doi.org/10.1007/s10334-003-0005-9
- [16] D. Gallichan, J. Scholz, A. Bartsch, T.E. Behrens, M.D. Robson, K.L. Miller, “Addressing a systematic vibration artifact in diffusion‐weighted MRI,” Human brain mapping, vol. 31, no. 2, pp. 193-202, 2010. https://doi.org/10.1002/hbm.20856
- [17] E. Fuhrer, M. Jouda, C. O. Klein, M. Wilhelm, J.G. Korvink, “Gradient-induced mechanical vibration of neural interfaces during MRI,” IEEE Transactions on Biomedical Engineering, vol. 67, no. 3, pp. 915-923, 2019. https://doi.org/10.1109/TBME.2019.2923693
- [18] I. Frollo, P. Andris, J. Pribil, V.Juras, “Indirect susceptibility mapping of thin-layer samples using nuclear magnetic resonance imaging,” IEEE transactions on magnetics, vol. 43, no. 8, pp. 3363-3367, 2007. https://doi.org/10.1109/TMAG.2007.900571
- [19] Y. Hu, Q. Wang, X. Hu, X. Zhu, S. Crozier, Y. Wang, F. Liu, “A simulation study on the design of gradient coils in MRI for the imaging area above the patient bed,” Measurement Science and Technology, vol. 28, no. 3, p. 035402, 2017. https://doi.org/10.1088/1361-6501/aa56cd
- [20] F. Jia, S. Littin, P. Amrein, H. Yu, A.W. Magill, T.A. Kuder, S. Bickelhaupt, F. Laun, M.E. Ladd M. Zaitsev, “ Design of a high-performance non-linear gradient coil for diffusion weighted MRI of the breast,” Journal of Magnetic Resonance, vol. 331, p. 107052, 2021. https://doi.org/10.1016/j.jmr.2021.107052
- [21] L. Xuan, X. Kong, J. Wu, Y. He, Z. Xu, “A smoothly-connected crescent transverse gradient coil design for 50mT MRI system,” Applied Magnetic Resonance, vol. 52, no. 6, pp. 649-660, 2021. https://doi.org/10.1007/s00723-021-01330-5
- [22] S. Shen, N. Koonjoo, X. Kong, M.S. Rosen, Z. Xu, “Gradient coil design and optimization for an ultra-low-field MRI system,” Applied Magnetic Resonance, vol. 53, no. 6, pp. 895-914, 2022. https://doi.org/10.1007/s00723-022-01470-2
- [23] B. De Vos, P. Fuchs, T. ’Reilly, A. Webb, R. Remis, “Gradient coil design and realization for a Halbach-based MRI system,” IEEE Transactions on Magnetics, vol. 56, no. 3, pp. 1-8, 2022. https://doi.org/10.1109/TMAG.2019.2958561
- [24] X. Kong, Z. Xu, S. Shen, J. Wu, Y. He, L. Xuan, H. Igarashi, “Gradient coil design method specifically for permanent-magnet-type low field portable MRI brain scanner,” IEEE transactions on instrumentation and measurement, vol. 72, pp. 1-12, 2022. https://doi.org/10.1109/TIM.2022.3225042
- [25] S. Nimbalkar, E. Fuhrer, P. Silva, T. Nguyen, M. Sereno, S. Kassegne, J. Korvink, “Glassy carbon microelectrodes minimize induced voltages, mechanical vibrations, and artifacts in magnetic resonance imaging,” Microsystems & nanoengineering, vol. 5, no. 1, p. 61, 2019. https://doi.org/10.1038/s41378-019-0106-x
- [26] C. Niu, H. Qu, “Numerical design of transverse gradient coil with transformed magnetic gradient field over an effective imaging area;” Magnetic Resonance Letters, p. 200139, 2024, https://doi.org/10.1016/j.mrl.2024.200139
- [27] J. Rösch, A. Mennecke, M. Knott, A. Doerfler, D.M. Grodzki, “Quiet LAIR at 7T MRI,” Investigative Radiology, vol. 55, no. 11, pp. 722-726, 2020. https://doi.org/10.1097/rli.0000000000000694
- [28] X. Liu, “ Development of Silent Multi-contrast Magnetic Resonance Imaging Acquisition Techniques,” Doctoral dissertation, Technische Universität München, 2021. https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20211216-1610202-1-4
- [29] D. Grodzki, . Wiesinger, “Zero Acoustic Noise with Zero TE MRI, In MRI of Short-and Ultrashort-T2 Tissues Making the Invisible Visible,” Cham: Springer International Publishing, pp. 575-586, 2024. https://doi.org/10.1007/978-3-031-35197-6_46
- [30] S. Skare, T. Sprenger, O. Norbeck, H. Rydén, L. Blomberg, E. Avventi, M. Engström, “A 1‐minute full brain MR exam using a multicontrast EPI sequence,” Magnetic resonance in medicine, vol. 79, no. 6, pp. 3045-3054, 2018. https://doi.org/10.1002/mrm.26974
- [31] Y. Wang, “Gradient coil design and acoustic noise control in magnetic resonance imaging systems,” Master’s thesis, university of Queensland, Australia, 2014.
- [32] Z. Zhou, A. Alfayad, T. C. Chao, J.G. Pipe, “Acoustic noise reduction for spiral MRI by gradient derating,” Magnetic Resonance in Medicine, vol. 90, no. 4, pp. 1547-1554, 2023. https://doi.org/10.1002/mrm.29747
- [33] N. Boulant, S. Ma, E. Walker, A. Beckett, A.T. Vu, S. Gunamony, D. A. Feinberg, “Acoustic noise reduction in the NexGen 7 T scanner,” Magnetic Resonance in Medicine, 2024. https://doi.org/10.1002/mrm.30211
- [34] Y. Wang, P. Xu, J. Zeng, J. Zhang, Y. Zhu, S. Che, C. Yao, Y. Ge, C. Wang, “Sequence optimization for MRI acoustic noise reduction,” Journal of Physics: Conference Series, Vol. 2591, No. 1, p. 012034, IOP Publishing, 2023. https://doi.org/10.1088/1742-6596/2591/1/012034
- [35] T.C. Wood, N.L. Damestani, A.J. Lawrence, E. Ljungberg, G.J. Barker, A.B. Solana, F. Wiesinger, S. C. Williams, “Silent myelin-weighted magnetic resonance imaging,” Wellcome Open Research, vol. 5, 2020.
- [36] A. Moelker, P.M.T. Pattynama, “Acoustic noise concerns in functional magnetic resonance imaging,” Hum Brain Mapp, vol. 20, pp. 123-141, 2003. https://doi.org/10.1002/hbm.10134
- [37] J. Hutter, A.N. Price, L. Cordero-Grande, “Quiet echo planar imaging for functional and diffusion MRI,” Magn ResonMed, vol. 79, pp.1447-1459, 2018. https://doi.org/10.1002/mrm.26810
- [38] S. Arawade and J. Piechowicz. "Spectral Analysis of MRI Sound Signal." International Journal of Electronics and Telecommunications, vol. 70, no. 4, pp. 839-847, 2024. https://doi.org/10.24425/ijet.2024.152068
- [39] M. Suchanek, K. Cieślar, T. Pałasz, K. Suchanek, T. Dohnalik, Z. Olejniczak, „Magnetic Resonance Imaging at Low Magnetic Field Using Hyperpolarized ^3 He Gas”, Acta Physica Polonica A, tom 107, nr 3, s. 491-506, 2005. https://www.doi.org/10.12693/APhysPolA.107.491
Uwagi
This work was supported by Faculty of Mechanical Engineering and Robotics, Department of Mechanics and Vibroacoustics, AGH University of Krakow, Poland from the finance source: 16.16.130.942/Piechowicz.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7d5c185-99df-4286-9d83-a4ceefc94b5b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.