PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Case of topological optimisation of a part produced by the FDM process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The article is devoted to the topological optimisation of an ABS part, which will be manufactured by the FDM (Fused Deposition Modelling) process. Firstly, the maximum deformation and stress are noted by simulating the part (under loads) before optimisation. Secondly, and with optimisation along two privileged directions, we check the distribution of the deformation and the stress on the volume of the part. Design/methodology/approach: The methodology is based on topological optimisation under ANSYS (SIMP method). The study support piece is a garage release handle. Findings: The numerical results prove the usefulness of choosing a manufacturing direction to have an optimised part that is light and of better resistance than the initial part (made by the conventional process). Research limitations/implications: Several parameters influence the right solution choice in this study. For future research, we can opt for an optimal solution in line with a minimum cost. Practical implications: The presented procedure can be generalised and applied to components of similar characterisation and other additive production methods. Originality/value: This article shows the usefulness of topological optimisation to guide the designer and an effective tool to design resistant parts by additive manufacturing. Thus, 3D printing can compete with conventional processes.
Rocznik
Strony
5--13
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
  • National School of Applied Sciences (ENSA), Abdelmalek Essaadi University, Tangier, Morocco
autor
  • National School of Applied Sciences (ENSA), Abdelmalek Essaadi University, Tangier, Morocco
autor
  • National School of Arts and Crafts (ENSAM), Moulay Ismail University, Meknes, Morocco
Bibliografia
  • [1] M.N.M. Azlin, R.A. Ilyas, M.Y.M. Zuhri, S.M. Sapuan, M.M. Harussani, S. Sharma, A.H. Nordin, N.M. Nurazzi, A.N. Afiqah, 3D Printing and Shaping Polymers, Composites, and Nanocomposites: A Review, Polymers 14/1 (2022) 180. DOI: https://doi.org/10.3390/polym14010180
  • [2] N. Krajangsawasdi, L. Blok, I. Hamerton, M.L. Longana, B.K.S. Woods, D. Ivanov, Fused Deposition Modelling of Fibre Reinforced Polymer Composites: A Parametric Review, Journal of Composites Science 5/1 (2021) 29. DOI: https://doi.org/10.3390/jcs5010029
  • [3] J. Hyun, H.A. Kim, Level-set topology optimization for effective control of transient conductive heat response using eigenvalue, International Journal of Heat and Mass Transfer 176 (2021) 121374. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121374
  • [4] P.M. Pandey, N.V. Reddy, S.G. Dhande, Part deposition orientation studies in layered manufacturing. Journal of Materials ProcessingTechnology 185/1-3 (2007) 125-131. DOI: https://doi.org/10.1016/j.jmatprotec.2006.03.120
  • [5] S. Ben Amor, S. Abdellaoui, A. Tahan, B. Louhichi, J.M. Tavares, Choosing the best direction of printing for additive manufacturing process in medical applications using a new geometric complexity model based on part CAD data, in: J. Tavares, R. Natal Jorge (eds), VipIMAGE 2019, Lecture Notes in Computational Vision and Biomechanics, vol. 34. Springer, Cham, 2019, 679-692. DOI: https://doi.org/10.1007/978-3-030-32040-9_70
  • [6] J.F.P. Lovo, C.A. Fortulan, M.M. da Silva, Optimal deposition orientation in fused deposition modeling for maximizing the strength of three-dimensional printed truss-like structures, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 233/4 (2019) 1206-1215. DOI: https://doi.org/10.1177/0954405418774603
  • [7] L. Di Angelo, P. Di Stefano, E. Guardiani, Search for the Optimal Build Direction in Additive Manufacturing Technologies: A Review, Journal of Manufacturing and Materials Processing 4/3 (2020) 71. DOI: https://doi.org/10.3390/jmmp4030071
  • [8] M.A. Matos, A.M.A.C. Rocha, L.A. Costa, Many-Objective Optimization of Build Part Orientation in Additive Manufacturing, The International Journal of Advanced Manufacturing Technology 112 (2021) 747-762. DOI: https://doi.org/10.1007/s00170-020-06369-5
  • [9] Y. Zhang ,W. De Backer, R. Harik, A. Bernard, Build Orientation Determination for Multi-Material Deposition Additive Manufacturing with Continuous Fibers, Procedia CIRP 50 (2016) 414-419. DOI: https://doi.org/10.1016/j.procir.2016.04.119
  • [10] Z. Luo, F. Yang, G. Dong, Y. Tang, Y.F. Zhao, Orientation Optimization in Layer-Based Additive Manufacturing Process, Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 1A: 36th Computers and Information in Engineering Conference, Charlotte, North Carolina, USA, 2016, V01AT02A039. DOI: https://doi.org/10.1115/DETC2016-59969
  • [11] C. Wang, Simultaneous Optimization of Build Orientation and Topology for Self-Supported Enclosed Voids in Additive Manufacturing, Computer Methods in Applied Mechanics and Engineering 388 (2022) 14227. DOI: https://doi.org/10.1016/j.cma.2021.114227
  • [12] P.D. Nezhadfar, S. Thompson, A. Saharan, N. Phan, N. Shamsaei, Structural Integrity of Additively Manufactured Aluminum Alloys: Effects of Build Orientation on Microstructure, Porosity, and Fatigue Behavior, Additive Manufacturing 47 (2021) 102292. DOI: https://doi.org/10.1016/j.addma.2021.102292
  • [13] Y. Zhou, T. Nomura, K. Saitou, Anisotropic Multicomponent Topology Optimization for Additive Manufacturing with Build Orientation Design and Stress-Constrained Interfaces, ASME Journal of Computing and Information Science in Engineering 21/1 (2020) 011007. DOI: https://doi.org/10.1115/1.4047487
  • [14] M. Barclift, A. Armstrong, T.W. Simpson, S.B. Joshi, CAD-Integrated Cost Estimation and Build Orientation Optimization to Support Design for Metal Additive Manufacturing, Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 2A: 43 rd Design Automation Conference, Cleveland, Ohio, USA, 2017, V02AT03A035. DOI: https://doi.org/10.1115/DETC2017-68376
  • [15] M. Langelaar, Combined Optimization of Part Topology, Support Structure Layout and Build Orientation for Additive Manufacturing. Structural and Multidisciplinary Optimization 57 (2018) 1985-2004. DOI: https://doi.org/10.1007/s00158-017-1877-z
  • [16] I. Baturynska, Statistical Analysis of Dimensional Accuracy in Additive Manufacturing Considering STL Model Properties, The International Journal of Advanced Manufacturing Technology 97 (2018) 2835- 2849. DOI: https://doi.org/10.1007/s00170-018-2117-4
  • [17] S. Chowdhury, K. Mhapsekar, S. Anand, Part Build Orientation Optimization and Neural Network-Based Geometry Compensation for Additive Manufacturing Process, Journal of Manufacturing Science and Engineering 140/3 (2018) 031009. DOI: https://doi.org/10.1115/1.4038293
  • [18] Y. Qin, Q. Qi, P.J. Scott, X. Jiang, Determination of Optimal Build Orientation for Additive Manufacturing Using Muirhead Mean and Prioritised Average Operators, Journal of Intelligent Manufacturing 30 (2019) 3015-3034. DOI: https://doi.org/10.1007/s10845-019-01497-6
  • [19] K. Ransikarbum, R. Pitakaso, N. Kim, Evaluation of Assembly Part Build Orientation in Additive Manufacturing Environment Using Data Envelopment Analysis, MATEC Web of Conferences 293 (2019) 02002. DOI: https://doi.org/10.1051/matecconf/201929302002
  • [20] L. Cheng, A. To, Part-Scale Build Orientation Optimization for Minimizing Residual Stress and Support Volume for Metal Additive Manufacturing: Theory and Experimental Validation, Computer-Aided Design 113 (2019) 1-23. DOI: https://doi.org/10.1016/j.cad.2019.03.004
  • [21] M.P. Bendsøe, O. Sigmund, Topology optimization by distribution of isotropic material, in: Topology Optimization, Springer, Berlin, Heidelberg, 2004, 1-69. DOI: https://doi.org/10.1007/978-3-662-05086-6_1
  • [22] M. Bruggi, P. Duysinx, Topology optimization for minimum weight with compliance and stress constraints, Structural and Multidisciplinary Optimization 46 (2012) 369-384. DOI: https://doi.org/10.1007/s00158-012-0759-7
  • [23] J.D. Deaton, R.V. Grandhi, A survey of structural and multidisciplinary continuum topology optimization: post 2000, Structural and Multidisciplinary Optimization 49 (2014) 1-38. DOI: https://doi.org/10.1007/s00158-013-0956-z
  • [24] Dassault Systemes, SIMP Method for Topology Optimization. Available from: https://help.solidworks.com/2019/english/SolidWorks/cworks/c_simp_method_topology.htm
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80ac4531-7f5f-4122-8ca9-e8e9ad0ceca1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.