PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Single-pulse method for measuring the current-voltage characteristics of solar panels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of the paper is to substantiate the new method of measuring the voltage-current characteristics of solar batteries based on the use of a digital oscilloscope and a special linear sweep device. Design/methodology/approach: To solve this problem, a test bench was developed on the basis of a solar radiation simulator. Findings: Practically it is proved that within the duration of a single pulse of 40 μs, it is possible to measure the voltage-current characteristics of an SB with a short-circuit current of up to 5.8 A. Research limitations/implications: The method is relevant for all types of solar batteries, but the measurements were carried out on serial samples of mono and polycrystalline silicon with a nominal output power of 30 to 140 W and a voltage of 12 V. Practical implications: The method can find its practical application in the development of an intelligent solar module. The technology of the intelligent module is based on the periodic removal of information on the operational parameters of the solar battery based on the measured voltage-current characteristic. Originality/value: Experimental confirmation of the effectiveness of the single-pulse measurement method of the voltage-current characteristic of a solar battery based on a linear current sweep.
Rocznik
Strony
24--29
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Department of Scientific, Analytical and Ecological Instruments and Systems, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremohy ave., 37, Kyiv, 03056, Ukraine
  • Department of Scientific, Analytical and Ecological Instruments and Systems, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremohy ave., 37, Kyiv, 03056, Ukraine
autor
  • Department of Scientific, Analytical and Ecological Instruments and Systems, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremohy ave., 37, Kyiv, 03056, Ukraine
Bibliografia
  • [1] A. Luque, S. Hegedus, Handbook of Photovoltaic Science, Wiley, 2003, 1179 pp.
  • [2] Measuring Photovoltaic Cell I-V Characteristics with the Model 2420 SourceMeter Instrument, Keithley. A Tektronix Company, Application Note Series, Number 1953, 4 pp.
  • [3] Technical data I-V Curve Tracer, Available at: https://www.ht-instruments.com/en/products/photovoltaic-testers/i-v-curve-tracers/i-v400w/.
  • [4] Pulsed I-V Testing for Components and Semiconductor Devices, Keithley. A Tektronix Company, Application Guide, 2014, 75 pp.
  • [5] Field Effect Transistors in Theory and Practice, Freescale Semiconductor Application Note, Number 211A, 1993, 11 pp.
  • [6] S. Tumanski, Induction coil sensor – a review, Measurement Science and Technology 18/3 (2007) 31-46.
  • [7] J. Lenz, A.S. Edelstein, Magnetic Sensors and Their Applications, IEEE Sensors Journal 6/3 (2006) 631- 649, DOI: https://doi.org/10.1109/JSEN.2006.874493.
  • [8] A. Abdallh, L. Dupre, A Rogowski-Chattock coil for local magnetic field measurements: sources of error, Measurement Science and Technology 21/10 (2010) 107003, DOI: https://doi.org/10.1088/0957-0233/21/10/107003
  • [9] D. Gaworska-Koniarek, J. Bajorek, W. Wilczyński, Magnetic Field Strength Sensor, Electrotechnical Review 93/7 (2017) 34-38, DOI: https://doi.org/10.15199/48.2017.07.09.
  • [10] R. Aparnathi, V.V. Dwivedi, Magnetic Femtotesla Inductor Coil Sensor for ELF Noise Signals-( 0.1Hz to 3.0 Hz) IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) 7/3 (2013) 65-76, DOI: https://doi.org/10.9790/1676-0736576.
  • [11] B. Zaidi, Introductory Chapter: Introduction to Photovoltaic Effect, in: B. Zaidi (Ed.), Solar Panels and Photovoltaic Material, IntechOpen, 2018, DOI: http://dx.doi.org/10.5772/intechopen.74389.
  • [12] B. Zaidi, I. Saouane,C. Shekhar, Simulation of singlediode equivalent model of polycrystalline silicon solar cells, International Journal of Materials Science and Applications 7/1-1 (2018) 8-10, DOI: https://doi.org/10.11648/j.ijmsa.s.2018070101.12.
  • [13] B. Zaidi, I. Saouane,C. Shekhar, Electrical energy generated by amorphous silicon solar panels, Silicon 10/3 (2018) 975-979, DOI: https://doi.org/10.1007/s12633-017-9555-8.
  • [14] B. Zaidi, I. Saouane, M.V. Madhava Rao, R. Li, B. Hadjoudja, S. Gagui, B. Chouial, A. Chibani, Matlab/Simulink based simulation of monocrystalline silicon solar cells, International Journal of Materials Science and Applications 5/6-1 (2016) 11-15, DOI: https://doi.org/10.11648/j.ijmsa.s.2016050601.13.
  • [15] K. Schneider, J. Benick, Multicrystalline Silicon Solar Cell with 21.9 Percent Efficiency, Fraunhofer ISE Again Holds World Record, Press Release: February 20, 2017, 1-3.
  • [16] M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.Y. Ho-Baillie, Solar cell efficiency tables (version 50), Progress in Photovoltatics: Research and Applications 25/7 (2017) 668-676, DOI: https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.2909.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-037a2e34-f2c0-4cfa-8c56-52fbf1ec7f08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.