PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Real-Time Compensation of Machine Tool Thermal Error Including Cutting Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The challenge to be addressed by this paper is to extend the common machine tool thermal compensation models considering only internal heat sources to include the effects of the cutting process. Although real-time software compensations of thermal errors exist, the majority of these models only presume machine tools under load-free rotation of the main spindle without any reference to rough machining. The machining process is completely neglected in spite of the fact that it represents a significant heat source and causes workpiece inaccuracy. This paper presents a real-time compensation of three-axis vertical milling centre thermal errors including the cutting process effect. The simulation is based on dynamic modelling using transfer functions. The model was implemented into a standard CNC controller of a three-axis vertical milling centre to compensate for thermal errors in real time. The inputs of the compensation algorithm are the spindle rotational speed, the 5 temperatures of the machine structure and spindle power. A reduction of thermal errors achieved by using the new approximation TF model including cutting process impact is up to 79% for steel cutting tests with different cutting conditions.
Rocznik
Strony
5--18
Opis fizyczny
Bibliogr. 34 poz., tab., rys.
Twórcy
autor
  • Czech Technical University in Prague, Faculty of Mechanical Engineering, Research Center of Manufacturing Technology, Prague, Czech Republic
autor
  • Czech Technical University in Prague, Faculty of Mechanical Engineering, Research Center of Manufacturing Technology, Prague, Czech Republic
autor
  • Czech Technical University in Prague, Faculty of Mechanical Engineering, Research Center of Manufacturing Technology, Prague, Czech Republic
Bibliografia
  • [1] MAYR J., JEDRZEJEWSKI J., UHLMANN E., DONMEZ M.A., KNAPP W., HÄRTIG F., WENDT K., MORIWAKI T., SHORE P., SCHMITT R., BRECHER C., WÜRZ T., WEGENER K., 2012, Thermal issues in machine tools, CIRP Annals - Manufacturing Technology, 61/2, 771−791.
  • [2] BRYAN J., 1990. International Status of Thermal Error Research, CIRP Annals - Manufacturing Technology, 39/2, 645−656.
  • [3] WECK M., MCKEOWN P., BONSE R., HERBST U., 1995, Reduction and Compensation of Thermal Errors in Machine Tools, CIRP Annals - Manufacturing Technology, 44/2, 589−598. ISSN 00078506.
  • [4] YUAN J., Ni J., 1998, The real-time error compensation technique for CNC machining systems, Mechatronics, 8, 359−380.
  • [5] BRECHER C., 2006, Messtechnische untersuchung von prozess und maschine, beurteilung und abnahme von werkzeugmaschinen (ab 1960), in Weck M (ed) 100 Jahre Produktionstechnik, Berlin.
  • [6] PETERS J., BRYAN J.B., ESTLER W.T., EVANS C., KUNZMANN H., LUCCA D.A., 2001, Contribution of ClRP to the Development of Metrology and Surface Quality Evaluation during the last fifty years, CIRP Annals - Manufacturing Technology, 50/2, 471−488.
  • [7] JEDRZEJEWSKI J., KWASNY W., MODRZYCKI W., 2008, Precise model of HSC machining centre for aerospace parts machining, Journal of Machine Engineering, 3, 29−41.
  • [8] ISO 13041-8, 2004, Test Conditions for Numerically Controlled Turning Machines and Turning Centres – Part 8: Evaluation of Thermal Distortions, Genf, Switzerland.
  • [9] ISO 10791-10, 2007, Test Conditions for Machining Centres – Part 10: Evaluation of Thermal Distortion, Genf, Switzerland.
  • [10] ISO 230-3, 2007, Test Code for Machine Tools - Part 3: Determination of Thermal Effects, Genf, Switzerland.
  • [11] CHEN J.S., 1996, A study of thermally induced machine tool errors in real cutting conditions, Int. J. Mach. Tools Manuf., 36/12, 1401−1411.
  • [12] POSTLETHWAITE S., ALLEN J., FORD D., 1998, The use of thermal imaging, temperature and distortion models for machine tool thermal error reduction, Proc. Inst. Mech. Eng. Pt. B: J. Eng. Manuf., 212/8, 671−679.
  • [13] PAHK H.J., LEE S.W., 2002, Thermal Error Measurement and Real Time Compensation System for the CNC Machine Tools Incorporating the Spindle Thermal Error and the Feed Axis Thermal Error, Int. J Adv. Manuf. Technol., 20, 487−494.
  • [14] DU Z., YANG J., YAO Z., XUE B., 2002, Modeling approach of regression orthogonal experiment design for the thermal error compensation of a CNC turning center, J. Mater. Process. Technol., 129/1, 619−623.
  • [15] LEE D. CHOI J., CHOI D., 2003, ICA based thermal source extraction and thermal distortion compensation method for a machine tool, International Journal of Machine Tools and Manufacture, 43/6, 589−597.
  • [16] MIZE C., ZIEGERT J., 2000, Neural network thermal error compensation of a machining center, Precision Engineering, 24/4, 338−346.
  • [17] YANG H., Ni, J., 2005, Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error, Int. J. Mach. Tools Manuf., 45/4, 455−465.
  • [18] KANG Y., CHANG C. W., HUANG Y., HSU C.L., 2007, Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools, Int. J. Mach. Tools Manuf., 47/2, 376-387.
  • [19] MORIWAKI T., SHAMOTO E., 1998, Analysis of thermal deformation of an ultraprecision air spindle system, CIRP Annals - Manufacturing Technology, 47/1, 315−319.
  • [20] YANG H., NI J., 2005, Adaptive model estimation of machine-tool thermal errors based on recursive dynamic modeling strategy, Int. J. Mach. Tools Manuf., 45/1, 1−11.
  • [21] BRECHER C., WISSMANN A., KLEIN W., 2010, Influence of ambient temperature versus influence of spindle load: Thermally conditioned deformation behavior of milling machines, VDI-Z Integr. Prod., 152/9, 78−81.
  • [22] HOREJŠ O., MAREŠ M., KOHÚT, P., BÁRTA P., HORNYCH J., 2009, A Compensation Technique of Machine Tool Thermal Errors Built on Thermal Transfer Functions, Conference Proceedings of the 5th International conference on Leading Edge Manufacturing in 21st Century, Osaka, Japan.
  • [23] HOREJŠ O., MAREŠ M., NOVOTNÝ L., 2012, Advanced Modelling of Thermally Induced Displacements and Its Implementation into Standard CNC Controller of Horizontal Milling Center, Procedia CIRP, 4, 67−72.
  • [24] LI Y., ZHAO W., LAN S., Ni J., WU W. LU B., 2015, A review on spindle thermal error compensation in machine tools, International Journal of Machine Tools & Manufacture, 95, 20−38.
  • [25] BRECHER C., WISSMANN A., 2011, Compensation of thermo-dependent machine tool deformations due to spindle load: investigation of the optimal transfer function in consideration of rough machining, Prod. Eng. Res. Devel., 5, 565−574.
  • [26] BRECHER C., ESSER M., WITT S., 2009, Interaction of manufacturing process and machine tool, CIRP Annals - Manufacturing Technology, 58/2, 588−607.
  • [27] BRECHER C., WISSMANN A., 2009, Stressing Unit for Modelling of Thermal Behaviour of a Milling Machine, 12th CIRP Conference on Modelling of Machining Operations, Donostia - San Sabastian - Spain.
  • [28] KARPAT Y., ÖZEL T., 2006, Predictive Analytical and Thermal Modeling of Orthogonal Cutting Process-Part II: Effect of Tool Flank Wear On Tool Forces, Stresses and Temperature Distributions, ASME Journal of Manuf. Sci. & Engr., 128/2, 445−453.
  • [29] RAMESH R., MANNAN M.A., POO A.N., 2003, Thermal error measurement and modelling in machine tools: Part I. Influence of varying operating conditions, Int. J. Mach. Tools Manuf., 43/4, 391−404.
  • [30] HOREJŠ O., MAREŠ M., HORNYCH J., 2014, A general approach to thermal error modelling of machine tools, Machines et Usinage à Grande Vitesse (MUGV), Clermont Ferrand, France.
  • [31] MAREŠ M., HOREJŠ O., BÁRTA P., HORNYCH J., KOHÚT P., 2011, Control and Detailed Modeling of Machine Tool Highly Nonlinear Thermal Behavior Based on Thermal Transfer Functions, World Academy of Science, Engineering and Technology, 59, 2735-2740, ISSN 2010-376X.
  • [32] BRECHER C., HIRSCH P., 2004, Compensation of Thermo-elastic Machine Tool Deformation Based on Control internal Data, CIRP Annals - Manufacturing Technology, 53/1, 299−304.
  • [33] CHEN J.S., HSU W.Y., 2003, Characterizations and models for the thermal growth of a motorized high speed spindle, International Journal of Machine Tools and Manufacture, 43/11, 1163–1170.
  • [34] LJUNG L., 2009, System identification toolbox 7 User’s guide, www.mathworks.com (The MathWorks).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43428bbc-7709-4e4a-8cd3-32eb1a3ec4ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.