PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Educational Overview of Ultrasound Probe Types and Their Fields of Application

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The ultrasound (US) imaging market is fast-changing in terms of needs, trends and tendencies as it undergoes rapid innovations. Due to technological improvements, a variety of US probe types is available to cover a wide range of clinical applications. The aim of this paper is to provide information to healthcare professionals to select the appropriate probe for the intended use and the desired performance/price ratio. This work describes the majority of conventional, special and unique US probe types currently available on the market, together with technological insights that are responsible for image quality and a list of some of their clinical applications. The description of the inner transducer technologies allows to understand what contributes to different prices, features, quality level and breadth of applications. The comparison of current US probes and the analysis of advanced performances arising from the latest innovations, may help physicians, biomedical and clinical engineers, sonographers and other stakeholders with purchasing and maintenance commitments, enabling them to select the appropriate probe according to their clinical and economical needs.
Rocznik
Strony
3--15
Opis fizyczny
Bibliogr. 55 poz., rys., tab., wykr.
Twórcy
  • Esaote S.p.A., Florence, 50127, Italy
  • Esaote S.p.A., Florence, 50127, Italy
  • Esaote S.p.A., Florence, 50127, Italy
  • Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, SM2 5NG, United Kingdom
Bibliografia
  • 1. Abels C. et al. (2017), Nitride-based materials for flexible MEMS tactile and flow sensors in robotics, Sensors, 17 (5): 1080, doi: 10.3390/s17051080.
  • 2. Akasheh F., Myers T., Fraser J. D., Bose S., Bandyopadhyay A. (2004), Development of piezoelectric micromachined ultrasonic transducers, Sensors and Actuators A: Physical, 111 (2-3): 275-287, doi: 10.1016/j.sna.2003.11.022.
  • 3. Andreoni G., Mazzola M., Matteoli S., D’Onofrio S., Forzoni L. (2015), Ultrasound system typologies, user interfaces and probes design: a review, Procedia Manuf Elsevier, 3: 112-119, doi: 10.1016/j.promfg.2015.07.115.
  • 4. Austeng A., Holm S. (2002), Sparse 2-D arrays for 3-D phased array imaging – Design methods, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49 (8): 1073-1086, doi: 10.1109/TUFFC.2002.1026019.
  • 5. Azhari H. (2012), Ultrasound: medical imaging and beyond (an invited review), Current Pharmaceutical Biotechnology, 13 (11): 2104-2116, doi: 10.2174/138920112802502033.
  • 6. Barthe P. G., Slayton M. H. (1996), 1.5-D ultrasound transducer array characterization, [in:] Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 2, pp. 895-897, doi: 10.1109/ULTSYM.1996.584355.
  • 7. Chen Y. C., Wu S. (2002), Multiple acoustical matching layer design of ultrasonic transducer for medical application, Japanese Journal of Applied Physics, 41 (10R): 6098-6107.
  • 8. Cho K., Baehyung K., Youngil K., Lee S., Jongkeun S. (2012), cMUT probe cooling design by thermal network, [in:] 2012 IEEE International Ultrasonics Symposium, pp. 631-634, doi: 10.1109/ULTSYM.2012.0157.
  • 9. Dausch D., Castellucci J., Chou D., von Ramm O. (2008), Theory and operation of 2-D array piezoelectric micromachined ultrasound transducers, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55 (11): 2484-2492, doi: 10.1109/TUFFC.956.
  • 10. De Luca R., Dattoma T., Forzoni L., Bamber J., Palchetti P., Gubbini A. (2018), Diagnostic ultrasound probes: a typology and overview of technologies, Current Directions in Biomedical Engineering, 4 (1): 49-53, doi: 10.1515/cdbme-2018-0013.
  • 11. Demore C. E. M. et al. (2009a), Functional characterisation of high frequency arrays based on micromoulded 1-3 piezocomposites, [in:] 2009 IEEE International Ultrasonics Symposium, pp. 1134-1137, doi: 10.1109/ULTSYM.2009.5441966.
  • 12. Demore C. E. M., Cochran S., Garcia-Gancedo L., Dauchy F., Button T. W., Bamber J. C. (2009b), 1-3 piezocomposite design optimised for high frequency kerfless transducer arrays, [in:] 2009 IEEE International Ultrasonics Symposium, pp. 1-4, doi: 10.1109/ULTSYM.2009.5442007.
  • 13. Diarra B., Liebgott H., Tortoli P., Cachard C. (2012), Sparse array techniques for 2Darray ultrasound imaging, Acoustics 2012, Nantes, France.
  • 14. Diarra B., Robini M., Tortoli P., Cachard C., Liebgott H. (2013), Design of optimal 2-d nongrid sparse arrays for medical ultrasound, IEEE Transactions on Biomedical Engineering, 60 (11): 3093-3102, doi: 10.1109/TBME.2013.2267742.
  • 15. Dinnes J. et al. (2018), High-frequency ultrasound for diagnosing skin cancer in adults, Cochrane Database of Systematic Reviews, 12 (12): CD013188, doi: 10.1002/14651858.CD013188.
  • 16. Felix N., Ratsimandresy L., Dufait L. (2001), High bandwidth, high density arrays for advanced ultrasound imaging, [in:] 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No. 01CH37263), Atlanta, GA, USA, Vol. 2, pp. 1123-1126, doi: 10.1109/ULTSYM.2001.991916.
  • 17. Fenster A. Downey D. B., Cardinal H. N. (2001), Three-dimensional ultrasound imaging, Physics in medicine & biology, 46 (5): R67-99, doi: 10.1088/0031-9155/46/5/201.
  • 18. Genovese M. (2016), Ultrasound transducers, Journal of Diagnostic Medical Sonography, 32 (1): 48-53, doi: 10.1177/8756479315618207.
  • 19. Gregory V. (1998), Musculoskeletal injuries: occupational health and safety issues in sonography, Sound Effects, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.463.6676&rep=rep1&type=pdf.
  • 20. Hasegawa H., de Korte C. L. (2016), Impact of element pitch on synthetic aperture ultrasound imaging, Journal of Medical Ultrasonics, 43 (3): 317-325, doi: 10.1007/s10396-016-0700-6.
  • 21. Hossack J. A., Auld B. A. (1993), Improving the characteristics of a transducer using multiple piezoelectric layers, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 40 (2): 131-139, doi: 10.1109/58.212561.
  • 22. Khuri-Yakub B. T., Oralkan O. (2011), Capacitive micromachined ultrasonic transducers for medical imaging and therapy, Journal of micromechanics and microengineering, 21 (5): 54004-54014, doi: 10.1088/0960-1317/21/5/054004.
  • 23. Kim K.-B., Hsu D. K., Ahn B., Kim Y.-G., Barnard D. J. (2010) Fabrication and comparison of PMN-PT single crystal, PZT and PZT-based 1-3 composite ultrasonic transducers for NDE applications, Ultrasonics, 50 (8): 790-797, doi: 10.1016/j.ultras.2010.04.001.
  • 24. Kochański W., Boeff M., Hashemiyan Z., Staszewski W. J., Verma P. K. (2015), Modelling and numerical simulations of in-air reverberation images for fault detection in medical ultrasonic transducers: a feasibility study, Journal of Sensors, 2015: 1-14, doi: 10.1155/2015/796439.
  • 25. Kwon S. et al. (2003), Ceramic/polymer 2-2 composites for high frequency transducers by tape casting, [in:] IEEE Symposium on Ultrasonics, Vol. 1, pp. 366-369, doi: 10.1109/ULTSYM.2003.1293424.
  • 26. Lockwood G. R., Foster F. S. (1996), Optimizing the radiation pattern of sparse periodic two-dimensional arrays, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 43 (1): 15-19, doi: 10.1109/58.484458.
  • 27. Maione E., Tortoli P., Lypacewicz G., Nowicki A., Reid J. M. (1999), PSpice modelling of ultrasound transducers: comparison of software models to experiment, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 46 (2): 399-406, doi: 10.1109/58.753029.
  • 28. Mastronardi V. M., Guido F., Amato M., De Vittorio M., Petroni S. (2014), Piezoelectric ultrasonic transducer based on flexible AlN, Microelectronic Engineering, 121: 59-63, doi: 10.1016/j.mee.2014.03.034.
  • 29. Matrone G., Savoia A., Terenzi M., Caliano G., Quaglia F., Magenes G. (2014), A volumetric CMUT-based ultrasound imaging system simulator with integrated reception and µ-beamforming electronics models, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61 (5): 792-804, doi: 10.1109/TUFFC.2014.6805693.
  • 30. Mazzola M., Forzoni L., D’Onofrio S., Andreoni G. (2017), Use of digital human model for ultrasound system design: a case study to minimize the risks of musculoskeletal disorders, International Journal of Industrial Ergonomics, 60: 35-46, doi: 10.1016/j.ergon.2016.02.009.
  • 31. Mazzola M., Forzoni L., D’Onofrio S., Marler T., Beck S. (2014a), Using Santos DHM to design the working environment for sonographers in order to minimize the risks of musculoskeletal disorders and to satisfy the clinical recommendations, Proceedings of the 5th International Conference on Applied Human Factors and Ergonomics AHFE 2014, Kraków, Poland, 19-23 July 2014.
  • 32. Mazzola M., Forzoni L., D’Onofrio S., Standoli C. E., Andreoni G. (2014b), Evaluation of Professional Ultrasound Probes with Santos DHM. Handling comfort map generation and ergonomics assessment of different grasps, Proceedings of the 5th International Conference on Applied Human Factors and Ergonomics AHFE 2014, Kraków, Poland, 19-23 July 2014.
  • 33. Mills D. M., Smith S. W. (1999), Multi-layered PZT/polymer composites to increase signal-to-noise ratio and resolution for medical ultrasound transducers, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 46 (4): 961-971, doi: 10.1109/58.775663.
  • 34. Ming Lu X., Proulx T. L. (2005), Single crystals vs. pzt ceramics for medical ultrasound applications, [in:] IEEE Ultrasonics Symposium 2005, pp. 227-230, doi: 10.1109/ULTSYM.2005.1602837.
  • 35. Murphy C., Russo A. (2000), An Update on Ergonomics Issue in Sonography, Burnaby, Employee Health and Safety Services at Healthcare Benefit Trust, School of Kinesiology, Simon Fraser University, British Columbia, 2000.
  • 36. Nelson T. R., Pretorius D. H. (1998), Three-dimensional ultrasound imaging, Ultrasound in Medicine & Biology, 24 (9): 1243-1270, doi: 10.1016/s0301-5629(98)00043-x.
  • 37. Prager R. W., Ijaz U. Z., Gee A. H., Treece G. M. (2010), Three-dimensional ultrasound imaging, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224 (2): 193-223, doi: 10.1243/09544119JEIM586.
  • 38. Provost J. et al. (2014), 3D ultrafast ultrasound imaging in vivo, Physics in Medicine & Biology, 59 (19): L1-L13, doi: 10.1088/0031-9155/59/19/L1.
  • 39. Ramalli A., Boni E., Savoia A. S., Tortoli P. (2015), Density-tapered spiral arrays for ultrasound 3-D imaging, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62 (8): 1580-1588, doi: 10.1109/TUFFC.2015.007035.
  • 40. Roux E., Ramalli A., Liebgott H., Cachard C., Robini M. C., Tortoli P. (2017), Wideband 2-D array design optimization with fabrication constraints for 3-D US imaging, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 64 (1): 108-125, doi: 10.1109/TUFFC.2016.2614776.
  • 41. Roux E., Ramalli A., Tortoli P., Cachard C., Robini M. C., Liebgott H. (2016), 2-D ultrasound sparse arrays multidepth radiatio optimization using simulated annealing and spiral-array inspired energy functions, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 63 (12): 2138-2149, doi: 10.1109/tuffc.2016.2602242.
  • 42. Savoia A. S., Caliano G., Pappalardo M. (2012), A CMUT probe for medical ultrasonography: From microfabrication to system integration, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59 (6): 1127-1138, doi: 10.1109/tuffc.2012.2303.
  • 43. Savord B., Solomon R. (2003), Fully sampled matrix transducer for real time 3D ultrasonic imaging, [in:] Proceedings on IEEE Symposium on Ultrasonics, 2003, Vol. 1, pp. 945-953, doi: 10.1109/ULTSYM.2003.1293556.
  • 44. Spicci L. (2013), FEM simulation for “pulse-echo” performances of an ultrasound imaging linear probe, COMSOL Conference, Rotterdam, 2013.
  • 45. Spicci L., Palchetti P., Gambineri F. (2017), Ultrasound probe with optimized thermal management, European patent EP3188664A1, European Patent Office.
  • 46. Szabó T. L. (2004), Diagnostic ultrasound imaging: inside out, Elsevier, doi: 10.1016/C2011-0-07261-7.
  • 47. Szabó T. L., Lewin P. A. (2013), Ultrasound transducer selection in clinical imaging practice, Journal of Ultrasound in Medicine, 32: 573-582, doi: 10.7863/jum.2013.32.4.573.
  • 48. ter Haar G. (2011), Ultrasonic imaging: safety considerations, Interface Focus, 1 (4): 686-697, doi: 10.1098/rsfs.2011.0029.
  • 49. Tortoli P., Guidi G., Berti P., Guidi F., Righi D. (1997), An FFT-based flow profiler for high-resolution in vivo investigations, Ultrasound in Medicine & Biology, 23 (6): 899-910, doi: 10.1016/S0301-5629(97)00017-3.
  • 50. Vannetti F., Atzori T., Fabbri L., Pasquini G., Forzoni L., Macchi C. (2018), Superficial electromyography, motion analysis and triggered-stereo cameras technologies applied to ultrasound system user interface evaluation, [in:] Proceedings of the AHFE 2017 International Conferences on Human Factors and Ergonomics in Healthcare and Medical Devices, July 17-21, 2017, Los Angeles, California, USA.
  • 51. Warshavski O. et al. (2016), Experimental evaluation of cMUT and PZT transducers in receive only mode for photoacoustic imaging, [in:] Proceedings of Photons Plus Ultrasound: Imaging and Sensing 2016, Vol. 9708, doi: 10.1117/12.2211799.
  • 52. Wildes D. G., Smith L. S. (2012), Advanced ultrasound probes for medical imaging, AIP Conference Proceeding, 1430: 801-808, doi: 10.1063/1.4716307.
  • 53. Yu Y. M., Chen M., Xiong Y., Chau M. M. C., Li R. S. H., Lau T. K. (2009), Comparison of conventional and PureWave crystal transducer in obstetric sonography, The Journal of Maternal-Fetal & Neonatal Medicine, 22 (7): 616-62, doi: 10.1080/14767050902801793.
  • 54. Yue Q. et al. (2014), Fabrication of a PMN-PT single crystal-based transcranial Doppler transducer and the power regulation of its detection system, Sensors, 14 (12): 24462-24471, doi: 10.3390/s141224462.
  • 55. Zhou Q., Lam K. H., Zheng H., Qiu W., Shung K. K. (2014), Piezoelectric single crystal ultrasonic transducers for biomedical applications, Progress in Materials Science, 66: 87-111, doi: 10.1016/j.pmatsci.2014.06.001.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b3ee207-afcc-4508-8f9b-f691a392a499
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.