Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A physical model of the air extraction rotor spinning channel was established in SolidWorks 2018 to explore the movement of the fiber in the rotor and the fiber transport channel. A fiber model was built using EDEM2018. Using the coupling software Fluent 19.0 and EDEM2018, a numerical analysis of the movement of fibers in the fiber transport channel and rotor was carried out. The research in this study provides a strong theoretical basis and technical support for further development of new rotor-spun yarns and optimization of key components with a short spinning process, high yarn-forming efficiency, and strong fiber adaptability.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--12
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Key Laboratory of Science & Technology for Eco-Textiles (Education Ministry), Jiangnan University, Wuxi, Jiangsu Province, 214122, China
autor
- Key Laboratory of Science & Technology for Eco-Textiles (Education Ministry), Jiangnan University, Wuxi, Jiangsu Province, 214122, China
Bibliografia
- 1. G.A. Demiroz, E. Oner, Investigation of the quality properties of open end spun recycled yarns made from blends of recycled fabric scrap wastes and virgin polyester fibre, J. Text. Inst. 110(11) (2019)569–1579.
- 2. R.H. Yang, C. He, H.X. Zhong, Effects of trash-removing part geometry on the airflow in the rotor spinning unit and the yarn properties, Text. Res. J. 93(2022) 5-6.
- 3. X.Y. Zhu, X.P. Wang, J.S. Kou, S.Y. Sun, An energy stable incompressible SPH method with consistent solid boundary treatment, J. Comput. Appl. Math. 428(2023)115367.
- 4. J. Valášek, P. Sváček, On aerodynamic force computation in fluid–structure interaction problems - Comparison of different approaches, J. Comput. Appl. Math. 428(2023)115208.
- 5. L. Feldman, Theoretical trajectory studies of light bodies in non-uniform twodimensional flows, Text. Res. J. 36(9) (1966)809-813.
- 6. L.H. Bangert, P.M. Sagdeo, On fiber alignment using fluid-dynamic forces, Text. Res. J. 47(12) (1977)773-780.
- 7. W.G. Nan, Y.S. Wang, H.P. Tang, A viscoelastic model for flexible fibers with material damping, Powder Technol. 276(2015) 175-182.
- 8. T. Sasayama, M. Inagaki, Efficient beadchain model for predicting fiber motion during molding of fiber-reinforced thermoplastics, J. Non-Newtonian Fluid Mech. 264(2019)135-143.
- 9. S. Yamamoto, T. Matsuoka, A method for dynamic simulation of rigid and flexible fibers in a flow field, J. Chem. Phys. 98(1) (1993)644-650.
- 10. P. Skjetne, R.F. Ross, D.J. Klingenberg, Simulation of single fiber dynamics, J. Chem. Phys. 107(6) (1997)2108-2121.
- 11. Z.G. Pei, Y. Zhang, J. Zhou, A model for the particle-level simulation of multiple flexible fibers moving in a wall-bounded fluid flow, J. Fluids Struct. 80(2018) 37- 38.
- 12. R.F. Ross, D.J. Klingenberg, Dynamic simulation of flexible fibers composed of linked rigid bodies, J. Chem. Phys. 106(7) (1997)2949-2960.
- 13. L.X. Kong, R.A. Platfoot, Computational two-phase air/fiber flow within transfer channels of rotor spinning machines, Text. Res. J. 67(4) (1997)269-278.
- 14. C.F. Schmid, L.H. Switzer, D.J. Klingenberg, Simulations of fiber flocculation: Effects of fiber properties and inter fiber friction, J. Rheol. 44(4) (2000)781-809.
- 15. Lindstrom S B, Uesaka T. Simulation of the motion of flexible fibers in viscous fluid flow, Phys. Fluids 19(11) (2007)113307-113322.
- 16. G.B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid, Proc. R. Soc. A 102(715) (1922)161-179.
- 17. E. Anczurowski, S.G. Mason, The kinetics of flowing dispersions: II. Equilibrium orientations of rods and discs, J. Colloid Interface Sci. 23(4) (1967)522-532.
- 18. A.C. Smith, W.W. Roberts, Straightening of crimped and hooked fibers in converging transport ducts: computational modeling, Text. Res. J. 64(6) (1994)335- 344.
- 19. F. Xu, D.Y. Li, P. Gao, W.Y. Zang, Z.D. Duan, J.P.Ou, Numerical simulation of two-dimensional transmission line icing and analysis of factors that influence icing, J. Fluids Struct. 118(2023)103858.
- 20. D. Kunhappan, B. Harthong, B. Chareyre, G. Balarac, P. J. J. Dumont, Numerical modeling of high aspect ratio flexible fibers in inertial flows, Phys. Fluids 29(9) (2017)093302.
- 21. R.H. Yang, C. He, B. Pan, H.X Zhong, C.D. Xu, Effect of position of the fiber transport channel on fiber motion in the high-speed rotor, Text. Res. J. 91(19-20) (2021)2294-2302.
- 22. A. Capone, G. P. Romano, Interactions between fluid and fibers in a turbulent backward-facing step flow, Phys. Fluids 27 (2015)053303.
- 23. H. Masoud, N.W. Mureithi, F.P. Gosselin, Large coupled bending and torsional deformation of an elastic rod subjected to fluid flow, J. Fluids Struct. 62(2016)367- 383.
- 24. Y.Z. Jin, J.Y. Cui, X.D. Li, H.L, Chen. An investigation on the distribution of massive fiber granules in rotor spinning units, Text. Res. J. 87(7) (2017)865-877.
- 25. H. Berthet, M. Fermigier, A. Lindner, Single fiber transport in a confined channel: Microfluidic experiments and numerical study, Phys. Fluids 25(2013)103601.
- 26. M.N. Xiao, H.S. Dou, C.Y. Wu, Critical rotating speed of rotor cup in an air suction open-end spinning machine, Text. Res. J. 87(13) (2017)1593-1603.
- 27. S.V. Patanker, D.B. Spalding, A Calculation procedure for heat mass and momentum transfer in three dimensional parabolic flows, Int. J. Heat Mass Transf. 15(1972)1787-1806.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1333a671-b04d-4ec9-9210-d2686d0bd420
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.