Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents analytical relationships based on the theory of Green’s functions. The relationshipsrefer to instantaneous and continuous as well as point and ring heat sources which are discussed. Therelationship relating to continuous ring source is the basis for modelling and designing of spiral groundheat exchangers. Heat transfer in the infinite and semi-infinite body was considered. In the latter case,the image method was discussed. Using the results of measurements regarding heat transfer in theground with a heat exchanger in the form of a single coil installed, a comparison of calculated groundtemperatures with measured values was presented.
Czasopismo
Rocznik
Tom
Strony
81--93
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
- Cracow University of Technology, Faculty of Chemical Engineering and Technology,Warszawska St. 24, 31-155 Krakow
autor
- Cracow University of Technology, Faculty of Chemical Engineering and Technology,Warszawska St. 24, 31-155 Krakow
Bibliografia
- 1. Abramowitz M., Stegun I.A., 1972.Handbook of mathematical functions with formulas, graphs, and mathematicaltables. 9th edition, New York, 358-364.
- 2. Bose J.E., Smith M.D., 1992. Performance of new ground heat exchanger configurations for heat pumps.SolarEng., 1, 385–393.
- 3. Carslaw H.S., Jaeger J.C., 1959.Conduction of heat in solids. 2nd edition, Clarendon Press, Oxford.
- 4. Cui P., Li X., Man Y., Fang Z., 2011. Heat transfer analysis of pile geothermal heat exchangers with spiral coils. Appl. Energy, 88, 4113–4119. DOI: 10.1016/j.apenergy.2011.03.045.
- 5. Go G.H., Lee S.R., Yoon S., Kim M.J., 2016. Optimum design of horizontal ground-coupled heat pump systemsusing spiral-coil-loop heat exchangers. Appl. Energy, 162, 330-345. DOI: 10.1016/j.apenergy.2015.10.113.
- 6. Jeon J.S., Lee S.R., Kim M.J., 2018. A modified mathematical model for spiral coil type horizontal ground heatexchangers.Energy, 152, 732–743. DOI: 10.1016/j.energy.2018.04.007.
- 7. Kim M.J., Lee S.R., Yoon S., Jeon J.S., 2018. An applicable design method for horizontal spiral-coil-type groundheat exchangers.Geothermics, 72, 338–347. DOI: 10.1016/j.geothermics.2017.12.010.
- 8. Larwa B., Teper M., Grzywacz R., Kupiec K., 2019. Study of a slinky-coil ground heat exchanger – Comparison ofexperimental and analytical solution.Int. J. Heat Mass Transfer, 142, 118438. DOI: 10.1016/j.ijheatmasstransfer.2019.118438.
- 9. Li H., Nagano K., Lai Y., 2012. A new model and solutions for a spiral heat exchanger and its experimentalvalidation.Int. J. Heat Mass Transfer, 55, 4404–4414. DOI: 10.1016/j.ijheatmasstransfer.2012.03.084.
- 10. Li H., Nagano K., Lai Y., 2012. Heat transfer of a horizontal spiral heat exchanger under groundwater advection.Int. J. Heat Mass Transfer, 55, 6819–6831. DOI: 10.1016/j.ijheatmasstransfer.2012.06.089.
- 11. Sangi R., Muller D., 2018. Dynamic modelling and simulation of a slinky-coil horizontal ground heat exchangerusing Modelica.J. Build. Eng., 16, 159–168. DOI: 10.1016/j.jobe.2018.01.005.
- 12. Wang D., Lu L., Cui P., 2016. A new analytical solution for horizontal geothermal heat exchangers with verticalspiral coils.Int. J. Heat Mass Transfer, 100, 111–120. DOI: 10.1016/j.ijheatmasstransfer.2016.04.001
- 13. Wang D., Lu L., Cui P., 2016. A novel composite-medium solution for pile geothermal heat exchangers with spiralcoils.Int. J. Heat Mass Transfer, 93, 760–769. DOI: 10.1016/j.ijheatmasstransfer.2015.10.055.
- 14. Xiong Z., Fisher D.E., Spitler J.D., 2015. Development and validation of a slinky ground heat exchanger model.Appl. Energy, 141, 57–69. DOI: 10.1016/j.apenergy.2014.11.058.
- 15. Yoon S., Lee S.R., Go G.H., 2015. Evaluation of thermal efficiency in different types of horizontal ground heatexchangers.Energy Build., 105, 100–105. DOI: 10.1016/j.enbuild.2015.07.054.
- 16. Zhang W., Yang H., Cui P., Lu L., Diao N., Fang Z., 2015. Study on spiral source models revealing ground-water transfusion effects on pile foundation ground heat exchangers.Int. J. Heat Mass Transfer, 84, 119–129.DOI: 10.1016/j.ijheatmasstransfer.2014.12.036
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4fc4022-0037-4c14-8765-46f959ea27d4