PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of structural concrete bar members based on secant stiffness methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the behavior of structural concrete linear bar members was studied using numerical model implemented in a computer program written in MATLAB. The numerical model is based on the modified version of the procedure developed by Oukaili. The model is based on real stress-strain diagrams of concrete and steel and their secant modulus of elasticity at different loading stages. The behavior presented by normal force-axial strain and bending moment-curvature relationships is studied by calculating the secant sectional stiffness of the member. Based on secant methods, this methodology can be easily implemented using an iterative procedure to solve non-linear equations. A comparison between numerical and experimental data, illustrated through the strain profiles, stress distribution, normal force-axial strain, and moment-curvature relationships, shows that the numerical model has good numerical accuracy and is capable of predicting the behavior of structural concrete members with different partially prestressing ratios at serviceability and ultimate loading stages.
Rocznik
Strony
1--16
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
  • Department of Civil Engineering, University of Baghdad Baghdad, IRAQ
  • Department of Civil Engineering, University of Baghdad Baghdad, IRAQ
  • Department of Civil Engineering, University of Baghdad Baghdad, IRAQ
Bibliografia
  • [1] Zandi Y., Akgun Y. and Durmus A. (2012): Investigating the use of high-performance concrete in partially prestressed beams and optimization of partially prestressed ratio. – Indian Journal of Science and Technology, vol.5, No.7, pp.2991-2996.
  • [2] Abdelrahman A.A. (1995): Serviceability of concrete beams prestressed by fiber reinforced plastic tendons. – Ph.D. Thesis, Manitoba Univ., Manitoba.
  • [3] Chen W., Hao H. and Chen S. (2015): Numerical analysis of prestressed reinforced concrete beam subjected to blast loading. – Materials and Design (1980-2015), vol.65, pp.662-674.
  • [4] Yapar O., Basu P.K. and Nordendale N. (2015): Accurate finite element modeling of pretensioned prestressed concrete beams. – Engineering Structures, vol.100, pp.163-178.
  • [5] Wolanski A.J. (2004): Flexural behavior of reinforced and prestressed concrete beams using finite element analysis. – Ph.D. Thesis.
  • [6] Oukaili N.K. (1991): Strength of partially prestressed concrete elements with mixed reinforcement by highly strength strands and steel bars. – Ph.D. Thesis, Moscow Civil Engineering Univ., Moscow, (in Russian).
  • [7] Oukaili N.K. (1997): Moment capacity and strength of reinforced concrete members using stress-strain diagrams of concrete and steel. – Journal of King Saud University, vol.10, pp.23-44.
  • [8] Kawakami M. and Ghali A. (1996): Time-dependent stresses in prestressed concrete sections of general shape. – PCI Journal, vol.41, No.3.
  • [9] Kawakami M. and Ghali A. (1996): Cracking, ultimate strength, and deformations of prestressed concrete sections of general shape. – PCI Journal, vol.41, No.4, pp.114-122.
  • [10] Rodríguez-Gutiérrez J.A. and Aristizábal-Ochoa J.D. (2000): Partially and fully prestressed concrete sections under biaxial bending and axial load. – Structural Journal, vol.97, No.4, pp.553-563.
  • [11] Karpenko N.I., Mukhamediev T.A. and Petrov A.N. (1986): The initial and transformed stress-strain diagrams of steel and concrete. – Special Publication in: Stress-Strain Condition for Reinforced Concrete Construction, Reinforced Concrete Research Center, Moscow, pp.7-25, (in Russian).
  • [12] Oukaili N.K. and Al-Hawwassi I.F. (2010): Short term deflection of ordinary, partially prestressed and GFRP bars reinforced concrete beams.– Journal of Engineering, vol.16, No.1, pp.4631-4652.
  • [13] Oukaili N.K. and Buniya M.K. (2013): Serviceability performance of externally prestressed steel-concrete composite girders.– Journal of Engineering, vol.19, No.6, pp.734-751.
  • [14] Gilbert R.I. (2013): Time-dependent stiffness of cracked reinforced and composite concrete slabs. – Procedia Engineering, vol.57, pp.19-34.
  • [15] Gilbert R.I. and Ranzi G. (2011): Time-dependent deformation. In: Time-Dependent Behaviour of Concrete Structures (1st Ed.) – Milton, England: Spon Press.
  • [16] Gilbert R.I., Bradford M.A., Gholamhoseini A. and Chang Z-T. (2012): Effects of shrinkage on the long-term stresses and deformations of composite concrete slabs. – Engineering Structures, vol.40, pp.9-19.
  • [17] Kaklauskas G. and Gribni V. (2011): Eliminating shrinkage effect from moment-curvature and tension-stiffening relationships of reinforced concrete members. – Journal of Structural Engineering (ASCE), vol.137, No.12, pp.1460-1469.
  • [18] Kaklauskas G., Gribniak V., Bacinskas D. and Vainiunas P. (2009): Shrinkage influence on tension-stiffening relationships in concrete members. – Engineering Structures, vol.31, No.6, pp.1305-1312.
  • [19] Kaklauskas G. and Ghaboussi G. (2001): Stress-strain relations for cracked tensile concrete from RC beam tests. – Journal of Structural Engineering (ASCE), vol.12, No.1, pp.64-73.
  • [20] Bischoff P.H. (2001): Effects of shrinkage on tension stiffening and cracking in reinforced concrete. – Canadian Journal of Civil Engineering, vol.28, No.3, pp.363-374.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a896b22c-f036-49b6-997b-bb9158b54c0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.