PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical directivity simulations of speaker arrays for omnidirectional sound source quality assessment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Omnidirectional sound sources are standard devices used in numerous acoustic measurements, such as the ones described in ISO3382, ISO140, or ISO354 standards. They are used when information on the sound diffraction at an object is required. State of the art findings describe several engineering designs of omnidirectional sound sources; some commercial applications can be also found. However, there is no universal design method for this kind of sound sources, neither in terms of the size and number of the transducers nor any general electroacoustic principles. This paper describes the use of Finite Elements Method (FEM) to derive the directivity patterns of different speaker arrays, such as spherical speaker arrays and the most popular polyhedrons. The number of transducers studied in the paper varies from 4 to 36. The influence of transducer size and the enclosure size was also preliminarily investigated. The simulation results were assessed with new strict omnidirectionality quality measures, and the influence of the transducers' number or size on a final omnidirectional sound source performance was verified.
Rocznik
Strony
art. no. 2022101
Opis fizyczny
Bibliogr. 22 poz., il. kolor., rys., wykr.
Twórcy
  • AGH University of Science and Technology, Mickiewicza Av. 30, 30-059 Cracow, Poland
Bibliografia
  • 1. ISO3382. Acoustics - Measurement of room acoustic parameters - Part 1: Performance spaces; Int. Stand. Organ. 2009.
  • 2. ISO 354. Acoustics - Measurement of sound absorption in a reverberation room; Int. Stand. Organ. 2003.
  • 3. E.C. for Standardization. Acoustics - Measurement of sound insulation in buildings and of building elements; Int. Stand. ISO 140, 1978.
  • 4. L. Miranda, D. Cabrera, K. Stewart; A concentric compact spherical microphone and loudspeaker array for acoustical measurements; 135th Audio Eng. Soc. Conv. 2013, 764-772.
  • 5. C. Hak, R.H.C. Wenmaekers, J.P.M. Hak, L.C.J. van Luxemburg; The source directivity of a dodecahedron sound source determined by stepwise rotation; In: Proceedings of Forum Acusticum, 2011.
  • 6. B. Chojnacki, S. Terry Cho, R. Mehra; Full range omnidirectional sound source for near-field head-related transfer-functions measurement; J. Audio Eng. Soc., 2021, 69(5), 323-339.
  • 7. G.Z. Yu, B.S. Xie, D. Rao; Directivity of spherical polyhedron sound source used in near-field HRTF measurements; Chinese Phys. Lett., 2010, 27, 124302.
  • 8. T.W. Leishman, S. Rollins, H.M. Smith; An experimental evaluation of regular polyhedron loudspeakers as omnidirectional sources of sound; J. Acoust. Soc. Am., 2006, 120(3), 1411-1422.
  • 9. D. D’Orazio, S. De Cesaris, P. Guidorzi, L. Barbaresi, M. Garai, R. Magalotti; Room acoustic measurements using a high-SPL dodecahedron; In: 140th Audio Engineering Society International Convention, 2016.
  • 10. N. Hosoya, H. Masuda, S. Maeda; Balloon dielectric elastomer actuator speaker; Appl. Acoust. 2019.
  • 11. T. Qu, Z. Xiao, M. Gong, Y. Huang, X. Li, X. Wu; Distance-dependent head-related transfer functions measured with high spatial resolution using a spark gap; IEEE Trans. Audio, Speech Lang. Process., 2009, 17(6), 1124-1132.
  • 12. N.M. Papadakis; Mimicking the Sound Field of a Dodecahedral Loudspeaker by a Common Directional Loudspeaker for Reverberation Time Measurements; Euronoise 2018, 765-70.
  • 13. R. San Martín, I.B. Witew, M. Arana, M. Vorländer; Influence of the source orientation on the measurement of acoustic parameters; Acta Acust. united with Acust., 2007, 93(3), 387-397.
  • 14. R. San Martín, M. Arana; Uncertainties caused by source directivity in room-acoustic investigations; J. Acoust. Soc. Am., 2008, 123(6), EL133-EL138.
  • 15. T. Knüttel, I.B. Witew, M. Vorländer; Influence of "omnidirectional" loudspeaker directivity on measured room impulse responses; J. Acoust. Soc. Am., 2013, 134(5), 3654-3662.
  • 16. P. Leopardi; A partition of the unit sphere into regions of equal area and small diameter; Electron. Trans. Numer. Anal., 2006, 25, 309-327.
  • 17. P. Cobo, S. Ortiz, D. Ibarra, C. de la Colina; Point source equalised by inverse filtering for measuring ground impedance; Appl. Acoust., 2013, 74(4), 561-565.
  • 18. C. Quested, A. Moorhouse, B. Piper, B. Hu; An analytical model for a dodecahedron loudspeaker applied to the design of omni-directional loudspeaker arrays; Appl. Acoust., 2014, 85, 161-171, DOI:10.1016/j.apacoust.2014.03.023.
  • 19. G.Z. Yu, B.S. Xie, D. Rao. Directivity of spherical polyhedron sound source used in near-field HRTF measurements; Chinese Phys. Lett., 2010, 27(12), 124302.
  • 20. B. Chojnacki, T. Kamisinski, A. Flach; Miniature omnidirectional sound sources for measurements applications; Audio Engineering Society Convention, 2020, 148, 10355. Available from: http://www.aes.org/e-lib/browse.cfm?elib=20772
  • 21. M. Arnela, O. Guasch, P. Sánchez-Martín, J. Camps, R.M. Alsina-Pagès, C. Martínez-Suquía; Construction of an omnidirectional parametric loudspeaker consisting in a spherical distribution of ultrasound transducers; Sensors, 2018, 18(12), 4317.
  • 22. B. Chojnacki, M. Ziobro, J. Rubacha; Piezoelektryczne wszechkierunkowe źródło dźwięku do akustycznych badań w skali w zakresie ultradźwięków; In: Studium badawcze młodych akustyków; Pilch A, editor; Wydawnictwo AGH, Kraków, Poland, 2016.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05f2e816-d8d8-4da9-b34d-19165ce1a440
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.