PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of high precision microscope objective for optical-fiber-fusion-splicing based on apochromatic theory

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the rapid development of optical fiber communication technology, the requirement for high -quality splicing has also increased. The accuracy of optical fiber alignment is the most crucial factor in determining splicing quality. The imaging quality of the microscope objective and the accuracy of the optical fiber alignment algorithm together determine the accuracy of optical fiber alignment. This paper proposes a new alignment method based on the black line at the interface between optical fiber core and cladding. The imaging characteristics of the black line are analyzed, and the initial structure of the microscope objective is deduced based on the theory of apochromatism, and finally a high-precision optical fiber fusion splicing microscope objective with a waveband from 460 to 660 nm is designed. An experimental device is set up to obtain optical fiber images, and the results indicate that the microscope objective plays a significant role in magnifying black lines. The horizontal and vertical offsets of optical fiber can be accurately identified through image processing. This paper considers the lens design theory and feature recognition algorithm comprehensively to improve the accuracy of optical fiber alignment, ultimately achieving high-quality optical fiber fusion splicing.
Czasopismo
Rocznik
Strony
143--156
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
  • Soochow University, School of Optoelectronic Science and Engineering, Suzhou, 215006, China
  • Soochow University, Collaborative Innovation Center of Suzhou Nano Science and Technology & Engineering Research Center of Digital Imaging and Display of Education Ministry of China, Suzhou, 215006, China
  • Soochow University, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, 215006, China
autor
  • Suzhou City University, School of Optical and Electronic Information, Suzhou, 215006, China
  • Soochow University, School of Optoelectronic Science and Engineering, Suzhou, 215006, China
autor
  • Soochow University, Collaborative Innovation Center of Suzhou Nano Science and Technology & Engineering Research Center of Digital Imaging and Display of Education Ministry of China, Suzhou, 215006, China
  • Soochow University, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, 215006, China
autor
  • Soochow University, School of Optoelectronic Science and Engineering, Suzhou, 215006, China
  • Soochow University, Collaborative Innovation Center of Suzhou Nano Science and Technology & Engineering Research Center of Digital Imaging and Display of Education Ministry of China, Suzhou, 215006, China
  • Soochow University, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, 215006, China
Bibliografia
  • [1] HABIB M.S., ANTONIO-LOPEZ J.E., MARKOS C., SCHÜLZGEN A., AMEZCUA-CORREA R., Single-mode low loss hollow-core anti-resonant fiber designs, Optics Express 27(4), 2019: 3824-3836. https://doi.org/10.1364/OE.27.003824
  • [2] XIAO L., JIN W., DEMOKAN M., Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges, Optics Letters 32(2), 2007: 115-117. https://doi.org/10.1364/OL.32.000115
  • [3] DING W., WANG Y.Y., GAO S.F., WANG M.L., WANG P., Recent progress in low-loss hollow-core anti-resonant fibers and their applications, IEEE Journal of Selected Topics in Quantum Electronics 26(4), 2020: 4400312. https://doi.org/10.1109/JSTQE.2019.2957445
  • [4] YANG S., YUAN L., Connecting technologies for coaxial dual core optical fiber, Journal of Lightwave Technology 38(23), 2020: 6629-6634. https://doi.org/10.1109/JLT.2020.3014652
  • [5] HU L.W., YUAN C.W., Modeling and analysis of the fusion strength of single-mode optical fiber in the high altitude environment, Optical Materials Express 12(8), 2022: 2995-3014. https://doi.org/10.1364/OME.463907
  • [6] ZHANG Z., LI R., WANG C., ZHOU M., LIU Y., PANG Y., Fusion splicing of hollow-core to standard single-mode fibers using a gradient-index bridge fiber, Journal of Optical Technology 90(1), 2023: 42-45. https://doi.org/10.1364/JOT.90.000042
  • [7] WANG Y., BARTELT H., BRUECKNER S., KOBELKE J., ROTHHARDT M., MÖRL K., ECKE W., WILLSCH R., Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters, Optics Express 16(10), 2008: 7258-7263. https://doi.org/10.1364/OE.16.007258
  • [8] DEBORD B., AMSANPALLY A., CHAFER M., BAZ A., MAUREL M., BLONDY J. M., HUGONNOT E., SCOL F., VINCETTI L., GÉRÔME F., Ultralow transmission loss in inhibited-coupling guiding hollow fibers, Optica 4(2), 2017: 209-217. https://doi.org/10.1364/OPTICA.4.000209
  • [9] WANG Z.F., BELARDI W., YU F., WADSWORTH W.J., KNIGHT J.C., Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber, Optics Express 22(18), 2014: 21872-21878. https://doi.org/10.1364/OE.22.021872
  • [10] ZHANG K., LI J., SUN S., WANG J., YU S., Optical system design of double-sided telecentric microscope with high numerical aperture and long working distance, Optics Express 31(14), 2023: 23518-23532. https://doi.org/10.1364/OE.496322
  • [11] MIKŠ A., NOVÁK J., Method of calculation of initial design parameters of microscope objective lenses with a long working distance, Applied Optics 61(12), 2022: 3288-3296. https://doi.org/10.1364/ AO.455543
  • [12] WU G., SONG Z., HAO M., YIN L., Edge detection in single multimode fiber imaging based on deep learning, Optics Express 30(17), 2022: 30718-30726. https://doi.org/10.1364/OE.464492
  • [13] HEBERT T.J., MALAGRE D., Optimization approach to edge detection, Journal of the Optical Society of America A 11(1), 1994: 80-88. https://doi.org/10.1364/JOSAA.11.000080
  • [14] PENG X., KONG L., Defect extraction method for additive manufactured parts with improved learningbased image super-resolution and the Canny algorithm, Applied Optics 61(28), 2022: 8500-8507. https://doi.org/10.1364/AO.467923
  • [15] BEVILACQUA M., ROUMY A., GUILLEMOT C., MOREL M.L.A., Single-image super-resolution via linear mapping of interpolated self-examples, IEEE Transactions on Image Processing 23(10), 2014: 5334-5347. https://doi.org/10.1109/TIP.2014.2364116
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7146ee40-6ad1-45a6-874e-75527ae9b4cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.