PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New generation of semipermeable membranes with carbon nanotubes for water and wastewater treatment : Critical review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Environmental applications of carbon nanotubes (CNTs) have recently attracted worldwide attention due to their excellent adsorption capacities and promising physical, chemical and mechanical properties, as well as the preparation of novel membranes with attractive features for water purification. This paper critically reviews the recent progress on the preparation and applications of CNT based membranes in water and wastewater treatment. Various synthesis techniques for the preparation of CNT based membranes are discussed. The functionalization of CNTs, which involves chemical/physical modification of pristine CNTs with different types of functional groups, improves the capabilities of CNT for water and wastewater treatment and/or removal of waterborne contaminants. The CNT-based membrane applications are found to possess a variety of advantages, including improving water permeability, high selectivity and antifouling capability. However, their applications at full scale are still limited by their high cost. Finally, we highlight that CNT membranes with promising removal efficiencies for respective contaminants can be considered for commercialization and to achieve holistic performance for the purpose of water treatment and desalination. This paper may provide an insight for the development of CNT based membranes for water purification in the future. With their tremendous separation performance, low biofouling potential and ultra-high water flux, CNT membranes have the potential to be a leading technology in water treatment, especially desalination.
Rocznik
Strony
3--27
Opis fizyczny
Bibliogr.167 poz., rys., tab., wykr.
Twórcy
  • Institute of Environmental Engineering, Polish Academy of Sciences, Poland
  • Silesian University of Technology, Faculty of Energy and Environmental Engineering, Poland
  • Institute for Chemical Processing of Coal, Poland
Bibliografia
  • 1. Adamczak, M., Kaminska, G. & Bohdziewicz, J. (2019). Preparation of polymer membranes by in situ interfacial polymerization. International Journal of Polymer Science, vol. 219, Article ID 6217924, 13 pages, DOI: 10.1155/2019/6217924.
  • 2. Ahmad, A., El-Nour, K.A., Ammar, R.A.A. & Al-Warthan, A., (2012). Carbon nanotubes, science and technology part (I) structure, synthesis and characterization., Arabian Journal of Chemistry, 5, pp. 1-23, DOI: 10.1016/j.arabjc.2010.
  • 3. Ahmed, F., Santos, C.M., Mangadlao, J., Advincula, R. & Rodrigues, D.F. (2013). Antimicrobial PVK: SWNT nanocomposite coated membrane for water purification: performance and toxicity testing, Water Res., 47, 12, pp. 3966-3975, DOI: 10.1016/j.watres.2012.10.055.
  • 4. Ahn, C.H, Baek, Y., Lee, C., Kim, S.O., Kim, S., Lee, S., Kim, S.H. Bae, S.S., Park, J. & Yoon, J. (2012). Carbon nanotube-based membranes: fabrication and application to desalination. J. Ind. Eng. Chem., 18, pp. 1551-1559, DOI: 10.1016/j.jiec.2012.04.005.
  • 5. Ajmani, G.S., Goodwin, D., Marsh, K., Fairbrother, D.H., Schwab, K.J., Jacangelo, J.G. & Huang, H. (2012). Modification of low pressure membranes with carbon nanotube layers for fouling control, Water Res., 46, 17, pp. 5645-5654, DOI: 10.1016/j.watres.2012.07.059.
  • 6. Ali, S., Ur Rehman, S.A., Luan, H.Y., Usman Farid, M. & Huang, H. (2019). Challenges and opportunities in functional carbon nanotubes for membrane-based water treatment and desalination. Science of the Total Environment, 646, pp. 1126-1139, DOI: 10.1016/j.scitotenv.2018.07.348.
  • 7. Al-Hakami, S.M., Khalil, A.B., Laoui, T. & Atieh, M.A. (2013). Fast disinfection of Escherichia coli bacteria using carbon nanotubes interaction with microwave radiation. Bioinorg. Chem. Appl., 458943, DOI: 10.1155/2013/458943.
  • 8. Al-Khaldi, F.A., Abu-Sharkh, B., Abulkibash, A.M. & Atieh, M.A. (2013). Cadmium removal by activated carbon, carbon nanotubes, carbon nanofibers, and carbon fly ash: a comparative study. Desalin. Water Treat., 53, pp. 1-13, DOI: 10.1080/19443994.2013.847805.
  • 9. Ansari, R. & Kazemi, E. (2012). Detailed investigation on single water molecule entering carbon nanotubes. App. Math. Mech., 33, pp.1287-1300, DOI: 10.1007/s10483-012-1622-8.
  • 10. Atieh, M.A., Bakather, O.Y., Tawabini, B.S., Bukhari, A.A., Khaled, M., Alharthi, M., Fettouhi, M. & Abuilaiwi, F.A. (2010). Removal of chromium (III) from water by using modified and nonmodified carbon nanotubes, J. Nanomater. Article ID 232378, pp. 1-9, DOI: 10.1155/2010/232378.
  • 11. Baek, Y., Kim, C., Kyun, D., Kim, T., Seok, J., Hyup, Y., Hyun, K., Seek, S., Cheol, S., Lim, J., Lee, K. & Yoon, J. (2014), High performance and antifouling vertically aligned carbon nanotube membrane for water purification. J. Membr. Sci., 460, 171-177, DOI: 10.1016/j.memsci.2014.02.042.
  • 12. Bahgat, M., Farghali, A.A., El Rouby, W.M.A. & Khedr, M.H. (2011). Synthesis and modification of multi-walled carbon nano-tubes (MWCNTs) for water treatment applications, J. Anal. Appl. Pyrolysis, 92, 2, pp. 307-313, DOI: 10.1016/j.jaap.2011.07.002.
  • 13. Bai, L., Liang, H., Crittenden, J., Qu, F., Ding, A., Ma, J., Du, X., Guo, S. & Li, G. (2015), Surface modification of UF membranes with functionalized MWCNTs to control membrane fouling by nom fractions. J. Membr. Sci., 492, 400-411, DOI: 10.1016/j.memsci.2015.06.006.
  • 14. Balasubramanian, K. & Burghard, M. (2005). Chemically functionalized carbon nanotubes, Small, 1, pp. 180-192, DOI: 10.1002/smll.200400118.
  • 15. Bhadra, M., Roy, S. & Mitra, S. (2013). Enhanced desalination using carboxylated carbon nanotube immobilized membranes. Sep. Purif. Technol., 120, pp. 373-377, DOI: 10.1016/j.seppur.2013.10.020.
  • 16. Bodzek, M. & Konieczny, K. (2017). Membrane techniques in the treatment of geothermal water for fresh and potable water production. [In:] Geothermal Water Management, Bundschuh, J. & Tomaszewska, B. (Eds.). CRC Press/Balkema, Taylor and Francis Group, Ch. 8, pp. 157-231, DOI: 10.1201/9781315734972.
  • 17. Bodzek, M. (2019). Membrane separation techniques - removal of inorganic and organic admixtures and impurities from water environment - review, Archives of Environmental Protection, 45, 4, pp. 4-19, DOI: 10.24425/aep.2019.130237.
  • 18. Bodzek, M., Konieczny, K. & Rajca, M. (2019). Membranes in water and wastewater disinfection - review. Archives of Environmental Protection, 45 (1), pp. 3-18, DOI: 10.24425/aep.2019.126419.
  • 19. Bodzek, M., Konieczny, K. & Kwiecińska-Mydlak, A. (2020a). Nanotechnology in water and wastewater treatment. Graphene – the nanomaterial for next generation of semipermeable membranes. Critical Reviews in Environmental Science and Technology, 50, 15, pp. 1515-1579, DOI: 10.1080/10643389.2019.1664258.
  • 20. Bodzek, M., Konieczny, K. & Kwiecińska-Mydlak, A. (2020b). The application of nanomaterial adsorbents for the removal of impurities from water and wastewaters: a review, Desalination and Water Treatment, 185, pp. 1-26, DOI: 10.5004/dwt.2020.25454.
  • 21. Bodzek, M., Konieczny, K. & Kwiecińska-Mydlak, A. (2020c). The application for nanotechnology and nanomaterials in water and wastewater treatment. Membranes, photocatalysis and disinfection, Desalination and Water Treatment, 186, pp. 88-106, DOI: 10.5004/dwt.2020.25231.
  • 22. Brady-Estévez, A.S., Kang, S. & Elimelech, M. (2008). A single-walled‐carbon‐nanotube filter for removal of viral and bacterial pathogens, Small, 4, 4, pp. 481-484, DOI: 10.1002/smll.200700863.
  • 23. Brady-Estévez, A.S., Schnoor, M.H., Kang, S. & Elimelech, M. (2010). SWNT-MWNT hybrid filter attains high viral removal and bacterial inactivation, Langmuir, 26, pp. 19153-19158, DOI:10.1021/la103776y.
  • 24. Brunet, L., Lyon, D., Zodrow, K., Rouch, J.-C., Caussat, B., Serp, P., Remigy, J.-C., Wiesner, M. & Alvarez, P.J. (2008). Properties of membranes containing semi-dispersed carbon nanotubes, Environ. Eng. Sci., 25, pp. 565-575, DOI: 10.1089/ees.2007.0076.
  • 25. Celik, E., Park, H., Choi, H. & Choi, H. (2011). Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment, Water Res., 45, pp. 274-282, DOI: 10.1016/j.watres.2010.07.060.
  • 26. Chan, Y. & Hill, J.M. (2012). Modeling on ion rejection using membranes comprising ultrasmall radii carbon nanotubes, Eur. Phys. J.B, 85, pp. 56, DOI: 10.1140/epjb/e2012-21029-0.
  • 27. Chan, Y. & Hill, J.M. (2013). Ion selectivity using membranes comprising functionalized carbon nanotubes, J. Math. Chem., 53, pp. 1258-1273, DOI: 10.1007/s10910-013-0142-y.
  • 28. Chan, W.-F., Chen, H.-Y., Surapathi, A., Taylor, M.G., Shao, X., Marand, E. & Johnson, J.K. (2013). Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination, ACS Nano, 7, pp. 5308-5319, DOI: 10.1021/nn4011494.
  • 29. Chen, H., Li, J., Shao, D., Ren, X. & Wang, X. (2012). Poly(acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co(II) removal from aqueous solution, Chem. Eng. J., 210, pp. 475-481, DOI: 10.1016/j.cej.2012.08.082.
  • 30. Chen, X., Qiu, M., Ding, H., Fu, K. & Fan, Y. (2016). A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification, Nanoscale, 8, pp. 5696-5705, DOI: 10.1039/c5nr08697c.
  • 31. Chi, M.F., Wu, W.L., Du, Y., Chin, C.J. & Lin, C.C. (2016). Inactivation of Escherichia coli planktonic cells by multi-walled carbon nanotubes in suspensions: Effect of surface function-nalization coupled with medium nutrition level, J Hazard. Mater., 318, pp. 507-514, DOI: 10.1016/j.jhazmat.2016.07.013.
  • 32. Choi, J., Jegal, J. & Kim, W. (2006). Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes, J. Membr. Sci., 284, pp. 406-415, DOI: 10.1016/j.memsci.2006.08.013.
  • 33. Chung, Y.T., Mahmoudi, E., Mohammad, A.W., Benamor, A., Johnson, D. & Hilal, N. (2017). Development of polysulfonenanohybrid membranes using ZnO-GO composite for enhanced antifouling and antibacterial control, Desalination, 402, pp. 123-132, DOI: 10.1016/j.desal.2016.09.030.
  • 34. Corry, B. (2008). Designing carbon nanotube membranes for efficient water desalination, J. Phys. Chem. B, 112, pp. 1427-1434, DOI: 10.1021/jp709845u.
  • 35. Corry, B. (2011). Water and ion transport through functionalised carbon nanotubes: implications for desalination technology, Energy Environ Sci., 4, pp. 751-759, DOI: 10.1039/C0EE00481B.
  • 36. Dalmas F., Chazeau, L., Gauthier, C., Masenelli-Varlot, K., Dendievel, R., Cavaillé, J.Y. & Forró, L. (2005). Multiwalled carbon nanotube/polymer nanocomposites: processing and properties, J. Polym. Sci. B Polym. Phys., 43, pp.1186-1197, DOI: 10.1002/polb.20409.
  • 37. Das, R., Abd Hamid, S.B., Ali, M.E., Ismail, A.F., Annuar, M.S.M. & Ramakrishna, S. (2014a). Multifunctional carbon nanotubes in water treatment: the present, past and future, Desalination, 354, pp. 160-179, DOI: 10.1016/j.desal.2014.09.032.
  • 38. Das, R., Ali, M.E., Hamid, S.B.A., Ramakrishna, S. & Chowdhury, Z.Z. (2014b). Carbon nanotube membranes for water purification: a bright future in water desalination, Desalination, 336, pp. 97-109, DOI: 10.1016/j.desal.2013.12.026.
  • 39. Daer, S., Kharraz, J., Giwa, A. & Hasan, S.W. (2015). Recent applications of nanomaterials in water desalination: a critical review and future opportunities, Desalination, 367, pp. 37-48, DOI: 10.1016/j.desal.2015.03.030.
  • 40. de Lannoy, C.-F., Soyer, E. & Wiesner, M.R. (2013). Optimizing carbon nanotube-reinforced polysulfone ultrafiltration membranes through carboxylic acid functionalization, J. Membr. Sci., 447, pp. 395-402, DOI: 10.1016/j.memsci.2013.07.023.
  • 41. Dobrzańska-Danikiewicz, A.D., Łukowiec, D., Cichocki, D. & Wolany, W. (2015). Nanokompozyty złożone z nanorurek węglowych pokrytych nanokryształami metali szlachetnych, Open Access Library, Annal V Issue 2, International OCSCO World Press, http://www.openaccesslibrary.com/vol22015/cover.pdf. (in Polish)
  • 42. Dufresne, A., Paillet, M., Putaux, J.L., Canet, R., Carmona, F., Delhaes, P. & Cui, S. (2002). Processing and characterization of carbon nanotube/poly(styrene-co-butyl acrylate) nanocomposites, J. Mater. Sci., 37, pp. 3915-3923, DOI: 10.1023/A:1019659624567.
  • 43. Dumée, L., Campbell, J.L., Sears, K., Schutz, J., Finn, N., Duke, M. & Gray, S. (2011). The Impact of hydrophobic coating on the performance of carbon nanotube bucky paper membranes in membrane distillation, Desalination, 283, pp. 64-67, DOI: 10.1016/j.desal.2011.02.046.
  • 44. Engel, M. & Chefetz, B. (2016). Adsorption and desorption of dissolved organic matter by carbon nanotubes: effects of solution chemistry, Environ. Pollut., 213, pp. 90-98, DOI: 10.1016/j.envpol.2016.02.009.
  • 45. Fornasiero, F., Park, H.G., Holt, J.K., Stadermann, M., Grigoropoulos, C.P., Noy, A. & Bakaijn, O. (2008). Ion exclusion by sub-2-nm carbon nanotube pores, Proc. Natl. Acad. Sci., 105, pp. 17250-17255, DOI: 10.1073/pnas.0710437105.
  • 46. Goh, P.S, Ismail, A.F. & Ng, B.C. (2013a). Carbon nanotubes for desalination: Performance evaluation and current hurdles, Desalination, 308, pp. 2-14, DOI: 10.1016/j.desal.2012.07.040.
  • 47. Goh, K., Setiawan, L., Wei, L., Jiang, W., Wang, R. & Chen, Y. (2013b). Fabrication of novel functionalized multi-walled carbon nanotube immobilized hollow fiber membranes for enhanced performance in forward osmosis process, J. Membr. Sci., 446, pp. 244-254, DOI: 10.1016/j.memsci.2013.06.022.
  • 48. Goh, P.S. & Ismail, A.F. (2015). Graphene-based nanomaterial: the state-of-the-art material for cutting edge desalination technology, Desalination, 356, pp. 115-128, DOI: 10.1016//j.desal.2014.10.001.
  • 49. Goh, K., Karahan, H.E., Wei, L., Bae, T.-H., Fane, A.G., Wang, R. & Chen, Y. (2016a). Carbon nanomaterials for advancing separation membranes: a strategic perspective, Carbon, 109, pp. 694-710, DOI: 10.1016/j.carbon.2016.08.077.
  • 50. Goh, P.S., Ismail, A.F. & Hilal, N. (2016b). Nano-enabled membranes technology: sustainable and revolutionary solutions for membrane desalination? Desalination, 380, pp. 100-104, DOI: 10.1016/j.desal.2015.06.002.
  • 51. Goh, P.S., Matsuura, T., Ismail, A.F. & Hilal, N. (2016c). Recent trends in membranes and membrane processes for desalination, Desalination, 391, pp. 43-60, DOI: 10.1016/j.desal.2015.12.016.
  • 52. Gong, J.L., Wang, B., Zeng, G.M., Yang, C.P., Niu, C.G., Niu, Q.Y., Zhou, W.J. & Liang, Y. (2009). Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent, J. Hazard. Mater., 164, 2-3, pp. 1517-1522, DOI: 10.1016/j.jhazmat.2008.09.072.
  • 53. Guo, J., Zhang, Q., Cai, Z. & Zhao, K. (2016). Preparation and dye filtration property of electrospun polyhydroxybutyrate-calcium alginate/carbon nanotubes composite nanofibrous filtration membrane, Sep. Purif. Technol., 161, pp. 69-79, DOI: 10.1016/j.seppur.2016.01.036.
  • 54. Han, Y., Xu, Z. & Gao, C. (2013). Ultrathin graphene nanofiltration membrane for water purification, Adv. Funct. Mater., 23, pp. 3693-3700, DOI: 10.1002/adfm.201202601.
  • 55. Hinds, B.J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V. & Bachas, L.G. (2004). Aligned multiwalled carbon nanotube membranes, Science, 303, pp. 62-65, DOI: 10.1126/science.1092048.
  • 56. Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P, Noy, A. & Bakajin, O. (2006). Fast mass transport through sub-2-nanometer carbon nanotubes, Science, 312, pp. 1034-1037, DOI: 10.1126/science.1126298.
  • 57. Hoon, C., Baek, Y., Lee, C., Ouk, S., Kim, S., Lee, S., Kim, S., Seek, S., Park, J. & Yoon, J. (2012). Carbon nanotube-based membranes: fabrication and application to desalination, J. Ind. Eng. Chem., 18, pp. 1551-1559, DOI: 10.1016/j.jiec.2012.04.005.
  • 58. Hou, C.-H., Liu, N.-L., Hsu, H.-L. & Den, W. (2014). Development of multi-walled carbon nanotube/poly(vinyl alcohol) composite as electrode for capacitive deionization, Sep. Purif. Technol., 130, pp. 7-14, DOI: 10.1016/j.seppur.2014.04.004.
  • 59. Huczko, A., Kurcz, M. & Popławska, M. (2015). Nanorurki węglowe. Otrzymywanie, charakterystyka, zastosowania, Wydawnictwo Uniwersytetu Warszawskiego, Warszawa.
  • 60. Hummer, G., Rasaiah,i J.C. & Noworyta, J.P. (2001). Water conduction through the hydrophobic channel of a carbon nanotube, Nature, 414, pp. 188-190, DOI: 10.1038/35102535.
  • 61. Ihsanullah, F.A., Al-Khaldi, B. Abu-sharkh, M., Khaled Atieh, M.A., Nasser, M.S., Laoui, T., Saleh, T.A., Agarwal, S., Tyagi, I. & Gupta, V.K. (2015a). Adsorptive removal of cadmium(II) ions from liquid phase using acid modified carbon-based adsorbents, J.Mol.Liq., 204, pp. 255-263, DOI: 10.1016/j.molliq.2015.01.033.
  • 62. Ihsanullah, H.A., Asmaly, T.A., Saleh, T., Laoui, V.K., Gupta, M.A. & Atieh, M.A. (2015b). Enhanced adsorption of phenols from liquids by aluminum oxide/carbon nanotubes: comprehensive study from synthesis to surface properties, J. Mol. Liq., 206, pp. 176-182, DOI: 10.1016/j.molliq.2015.02.028.
  • 63. Ihsanullah, T.L., Marwan, K., Muataz, A.A., Adnan, M.A., Amjad, B.K. & Aamir, A. (2015c). Novel anti-microbial membrane for desalination pretreatment: a silver nanoparticle-doped carbon nanotube membrane, Desalination, 376, pp. 82-93, DOI: 10.1016/j.desal.2015.08.017.
  • 64. Ihsanullah A.A., Al-Amer, A.M., Laoui, T., Al-Marri, M.J., Nasser, M.S., Khraisheh, M. & Atieh, M.A. (2016a). Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications, Sep. Purif. Technol., 157, pp. 141-161, DOI: 10.1016/j.seppur.2015.11.039.
  • 65. Ihsanullah, A., Al Amer, A.M., Laoui, T., Abbas, A., Al-Aqeeli, N., Patel, F., Khraisheh, M., Atieh, M.A., Hilal, N. (2016b). Fabrication and antifouling behaviour of a carbon nanotube membrane, Mater. Des., 89, pp. 549-558, DOI: 10.1016/j.matdes.2015.10.018.
  • 66. Ihsanullah, F.A., Al-Khaldi, B., Abu-sharkh, M., A., Qureshi, M.I., Laoui, T. & Atieh, M.A. (2016c). Effect of acid modification on adsorption of hexavalent chromium (Cr(VI)) from aqueous solution by activated carbon and carbon nanotubes, Desalin. Water Treat., 57, pp. 7232-7244, DOI: 10.1080/19443994.2015.102184.
  • 67. Ihsanullah, A.A. (2019). Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future, Sep Purif Technol., 209, pp. 307-337, DOI: 10.1016/j.seppur.2018.07.043.
  • 68. Jia, G., Wang, H., Yan, L., Wang, X., Pei, R., Yan, T., Zhao, Y. & Guo, X. (2005). Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene, Environmental Science & Technology, 39, pp. 1378-1383, DOI: 10.1021/es048729l.
  • 69. Kabbashi, N.A., Atieh, M.A., Al-Mamun, A., Mirghami, M.E.S., Alam, M.D.Z. & Yahya, N. (2009). Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution, J. Environ. Sci., 21, 4, pp. 539-544, DOI: 10.1016/S1001-0742(08)62305-0.
  • 70. Kaminska, G., Bohdziewicz, J., Palacio, L., Hernández, A. & Prádanos, P. (2016). Polyacrylonitrile membranes modified with carbon nanotubes: Characterization and micropollutants removal analysis, Desalin. Water Treat., 57, pp. 1344-1353, DOI: 10.1080/19443994.2014.1002277.
  • 71. Kandah, M.I. & Meunier, J.L. (2007). Removal of nickel ions from water by multi-walled carbon nanotubes, J. Hazard. Mater., 146, 1-2, pp. 283-288, DOI: 10.1016/j.jhazmat.2006.12.019.
  • 72. Kang, S., Pinault, M., Pfefferle, L.D. & Elimelech, M. (2007). Single--walled carbon nanotubes exhibit strong antimicrobial activity, Langmuir, 23, pp. 8670-8673, DOI: 10.1021/la701067r.
  • 73. Kang, S., Herzberg, M., Rodrigues, D.F. & Elimelech, M. (2008). Antibacterial effects of carbon nanotubes: Size does matter, Langmuir, 24, pp. 6409-6413, DOI: 10.1021/la800951v.
  • 74. Kang G.D., Cao Y.M. (2012). Development of antifouling reverse osmosis membranes for water treatment: a review, Water Res., 46, 3, pp. 584-600, DOI: 10.1016/j.watres.2011.11.041.
  • 75. Kar, S., Bindal, R.C. & Tewari, P.K. (2012). Carbon nanotube membranes for desalination and water purification: challenges and opportunities, Nano Today, 7, pp. 385-389, DOI: 10.1016/j.nantod.2012.09.002.
  • 76. Khalid, A., Al-Juhani, A.A., Al-Hamouz, O.C., Laoui, T., Khan, Z. & Atieh, M.A. (2015). Preparation and properties of nanocomposite polysulfone/multi-walled carbon nanotubes membranes for desalination, Desalination, 367, pp. 134-144. DOI: 10.1016/j.desal.2015.04.001.
  • 77. Kim, E.-S., Hwang, G., Gamal El-Din, M. & Liu, Y. (2012). Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment, J. Membr. Sci., pp. 394-395, 37-48, DOI: 10.1016/j.memsci.2011.11.041.
  • 78. Kim, H.J., Choi, K., Baek, Y., Kim, D., Shim, J., Yoon, J. & Lee, J. (2014). High-Performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions, ACS Appl. Mater. Interf., 6, pp. 2819-2829, DOI: 10.1021/am405398f.
  • 79. Kochkodan, V. & Hilal, N. (2015). A comprehensive review on surface modified polymer membranes for biofouling mitigation, Desalination, 356, pp. 187-207, DOI: 10.1016/j.desal.2014.09.015.
  • 80. Lam, C.-W., James, J.T., McCluskey, R., Arepalli, S. & Hunter, R.L. (2008). A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks, Crit. Rev. Toxicol., 36, 3, pp. 189-217, DOI: 10.1080/10408440600570233.
  • 81. Lee, C. & Baik, S. (2010). Vertically-aligned carbon nanotube membrane filters with superhydrophobicity and superoleophilicity, Carbon, 48, pp. 2192-2197, DOI: 10.1016/j.carbon.2010.02.020.
  • 82. Lee, B., Baek, Y., Lee, M., Jeong, D.H., Lee, H.H., Yoon, J. & Kim, Y.H. (2015). A carbon nanotube wall membrane for water treatment, Nat. Commun., 6, pp. 7109, DOI: 10.1038/ncomms8109.
  • 83. Lee, J., Jeong, S. & Liu, Z. (2016). Progress and challenges of carbon nanotube membrane in water treatment, Crit. Rev. Environ. Sci. Technol., 46, pp. 999-1046, DOI: 10.1080/10643389.2016.1191894.
  • 84. Lee, J.-G., Lee, E.-J., Jeong, S., Guo, J., An, A.K., Guo, H., Kim, J., Leiknes, T. & Ghaffour, N. (2017). Theoretical modeling and experimental validation of transport and separation properties of carbon nanotube electrospun membrane distillation, J. Membr. Sci., 526, pp. 395-408, DOI: 10.1016/j.memsci.2016.12.045.
  • 85. Li, J., Chen, S., Sheng, G., Hu, J., Tan, X. & Wang, X., (2011). Effect of surfactants on Pb(II) adsorption from aqueous solutions using oxidized multiwall carbon nanotubes, Chem. Eng. J., 166, 2, pp. 551-558, DOI: 10.1016/j.cej.2010.11.018.
  • 86. Li, S., Liao, G., Liu, Z., Pan, Y., Wu, Q., Weng, Y., Zhang, X., Yang, Z. & Tsui O.K.C. (2014). Enhanced water flux in vertically aligned carbon nanotube arrays and polyethersulfone composite membranes, J. Mater. Chem. A., 2, pp. 12171-12176, DOI: 10.1039/C4TA02119C.
  • 87. Li, S., He, M., Li, Z., Li, D. & Pan, Z. (2017). Removal of humic acid from aqueous solution by magnetic multi-walled carbon nanotubes decorated with calcium, J. Mole. Liquids, 230, pp. 520-528, DOI: 10.1016/j.molliq.2017.01.027.
  • 88. Liu, L., Son, M., Chakraborty, S. & Bhattacharjee, C. (2013). Fabrication of ultra-thin polyelectrolyte/carbon nanotube membrane by spray-assisted layer-by-layer technique: characterization and its anti-protein fouling properties for water treatment, Desalin. Water Treat., 51, pp. 6194-6200, DOI: 10.1080/19443994.2013.780767.
  • 89. Liu, J., Wang, Y., Yu, Z., Cao, X., Tian, L., Sun, S. & Wu, P. (2017). A comprehensive analysis of blue water scarcity from the production, consumption and water transfer perspectives, Ecol. Indic., 72, pp. 870-880, DOI: 10.1016/j.ecolind.2016.09.021.
  • 90. Lu, C. & Chiu, H. (2006). Adsorption of zinc(II) from water with purified carbon nanotubes, Chem. Eng. Sci., 61, 4, pp. 1138-1145, DOI: 10.1016/j.ces.2005.08.007.
  • 91. Madhura, L., Kanchi, S., Myalowenkosi, I., Singh, S., Bisetty, K. & Inamuddin (2018). Membrane technology for water purification, Environmental Chemistry Letters, 16, pp. 343-365, DOI: 10.1007/s10311-017-0699-y.
  • 92. Majumder, M., Chopra, N., Andrews, R. & Hinds, B.J. (2005). Nanoscale hydrodynamics: enhanced flow in carbon nanotubes, Nature, 438, pp. 44, DOI: 10.1038/438044a.
  • 93. Manawi, Y., Kochkodan, V., Ali Hussein, M., M.A. Khaleel, M.A., Khraisheh M. & Hilal, N. (2016). Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination? Desalination, 391, pp. 69-88, DOI: 10.1016/j.desal.2016.02.015.
  • 94. Manawi, Y.M., Ihsanullah, A. Samara Al-Ansari, T. & Atieh, M.A. (2018). A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method, Materials, 11, pp. 822, DOI: 10.3390/ma11050822.
  • 95. Mauter, M.S. & Elimelech, M. (2008). Environmental applications of carbon-based nanomaterials, Environ. Sci. Technol., 42, 16, pp. 5843-5859, DOI: 10.1021/es8006904.
  • 96. McCarthy B., Coleman J.N., Czerw R., Dalton A.B., Panhuis M.I.H., Maiti A., Drury A., Bernier P., Nagy J.B., Lahr B., Byrne H.J., Carroll D.L., Blau W.J. (2002). A microscopic and spectroscopic study of interactions between carbon nanotubes and a conjugated polymer, J. Phys. Chem. B, 106, pp. 2210-2216, DOI: 10.1021/jp013745f.
  • 97. McGinnis R.L., Reimund K., Ren L. Xia M.R., Chowdhury X., Sun M., Abril J.D., Moon M.M., Merrick J., Park K.A., Stevens J.R., McCutcheon B.D., Freeman. (2018). Large-scale polymeric carbon nanotube membranes with sub-1.27-nm pores, Sci. Adv. 4, e1700938, DOI: 10.1126/sciadv.1700938.
  • 98. Mechrez G., Krepker M.A., Harel Y., Lellouche J.-P., Segal E. (2014). Biocatalytic carbon nanotube paper: A ‘one-pot’ route for fabrication of enzyme-immobilized membranes for organophosphate bioremediation, J. Mater. Chem. B, 2, pp. 915-922, DOI: 10.1039/C3TB21439G.
  • 99. Mehwish N, Kausar A., Siddiq M. (2015). High-performance polyvinylidene fluoride/poly (styrene - butadiene - styrene)/ functionalized MWCNTs-SCN-Ag nanocomposite membranes, Iran. Polym. J. 24, pp. 549-559, DOI: 10.1007/s13726-015-0346-z.
  • 100. Morsi R.E., Alsabagh A.M., Nasr S.A., Zaki M.M. (2017). Multifunctional nanocomposites of chitosan, silver nanoparticles, copper nanoparticles and carbon nanotubes for water treatment: Antimicrobial characteristics. Int. J. Biol. Macromol., 97, pp. 264-269, DOI: 10.1016/j.ijbiomac.2017.01.032.
  • 101. Mubarak N.M., Alicia R.F., Abdullah E.C., Sahu J.N., Haslija A.B.A., Tan J. (2013). Statistical optimization and kinetic studies on removal of Zn2+ using functionalized carbon nanotubes and magnetic biochar, J. Environ. Chem. Eng., 1 (3), pp. 486-495, DOI: 10.1016/j.jece.2013.06.011.
  • 102. Nie C., Yang Y., Cheng C., Ma L., Deng J., Wang L., Zhao C. (2017). Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications, Acta. Biomater., 51, pp. 479-494, DOI: 10.1016/j.actbio.2017.01.027.
  • 103. Ntim, S.A., Mitra, S. (2011). Removal of trace arsenic to meet drinking water standards using iron oxide coated multiwall carbon nanotubes, J. Chem. Eng. Data, 56, 2077-2083, DOI: https://doi.org/10.1016/j.actbio.2017.01.027.
  • 104. Ntim, S.A., Mitra, S. (2012). Adsorption of arsenic on multiwall carbon nanotube-zirconia nanohybrid for potential drinking water purification, J. Colloid Interface Sci., 375 (1), 154-159, DOI: 10.1016/j.jcis.2012.01.063.
  • 105. Park O.-K., Kim N.H., Lau K.-t., Lee J.H. (2010a). Effect of surface treatment with potassium persulfate on dispersion stability of multi-walled carbon nanotubes, Mater. Lett., 64, pp. 718-721, DOI: 10.1016/j.matlet.2009.12.048.
  • 106. Park J., Choi W., Cho J., Chun B.H., Kim S.H., Lee K.B., Bang J. (2010b). Carbon nanotube based nanocomposite desalination membranes from layer-by-layer assembly, Desalin. Water Treat., 15, pp. 76-83, DOI: 10.5004/dwt.2010.1670.
  • 107. Park J., Choi W., Kim S.H., Chun B.H., Bang J., Lee K.B., Park J., Choi W., Kim S.H., Chun B.H., Bang J., Lee K.B. (2010c). Enhancement of chlorine resistance in carbon nanotube based nanocomposite reverse osmosis membranes, Desalin. Water Treat., 15, pp. 198-204, DOI: 10.5004/dwt.2010.1686.
  • 108. Park S.-M., Jung J., Lee S., Baek Y., Yoon J., Seo D.K., et al. (2014). Fouling and rejection behavior of carbon nanotube membranes, Desalination, 343, pp. 180-186, DOI: 10.1016/j.desal.2013.10.005.
  • 109. Peng X., Jin J., Ericsson E.M., Ichinose I. (2007). General method for ultrathin free-standing films of nanofibrous composite materials, J. Am. Chem. Soc., 129, pp. 8625-8633, DOI: 10.1021/ja0718974.
  • 110. Pillay K., Cukrowska E.M., Coville N.J. (2009). Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution, J. Hazard. Mater., 166 (2-3), pp. 1067-1075, DOI: 10.1016/j.jhazmat.2008.12.011.
  • 111. Qadir D., Mukhtar H., Keong L.K. (2017). Mixed matrix membranes for water purification applications, Sep. Purif Rev. 46, pp. 62-80, DOI: 10.1080/15422119.2016.1196460.
  • 112. Raghavendra S. Hebbar, Arun M. Isloor, Inamuddin, Asiri A.M. (2017). Carbon nanotube- and graphene-based advanced membrane materials for desalination, Environ Chem. Lett., 15, pp. 643-671, DOI: 10.1007/s10311-017-0653-z.
  • 113. Rashid M., Ralph S.F. (2017). Carbon nanotube membranes: synthesis, properties, and future filtration applications, Nanomaterials, 7 (5), 99-1-99-28, DOI: 10.3390/nano7050099.
  • 114. Ratto T.V., Holt J.K., Szmodis A.W. (2010). Membranes with embedded nanotubes for selective permeability, Patent Application No. 20100025330 (2010), https://pdfpiw.uspto.gov/.piw?Docid=07993524.
  • 115. Ren X., Chen C., Nagatsu M., Wang X. (2011). Carbon nanotubes as adsorbents in environmental pollution management: a review, Chem. Eng. J., 170 (2-3), pp. 395-410, DOI: 10.1016/j.cej.2010.08.045.
  • 116. Roy S., Jain V., Bajpai R., Ghosh P., Pente A.S., Singh B.P., Misra D.S. (2012). Formation of carbon nanotube bucky paper and feasibility study for filtration at the nano and molecular scale, J. Phys. Chem. C, 116, pp. 19025-19031, DOI: 10.1021/jp305677h.
  • 117. Rodrigues D.F., Elimelech M. (2010). Toxic Effects of Single-Walled Carbon Nanotubes in the Development of E. coli Biofilm, Environmental Science & Technology, 44, pp. 4583-4589, DOI: 10.1021/es1005785.
  • 118. Scoville C., Cole R., Hogg J., Farooque O., and A. Russell, (2019). Carbon Nanotubes, https://courses.cs.washington.edu/courses/csep590a/08sp/projects/CarbonNanotubes.pdf (Accessed:11.25.2019).
  • 119. Sears K., Dumée L., Schütz J., She M., Huynh C., Hawkins S., Duke M., Gray S. (2010). Recent developments in carbon nanotube membranes for water purification and gas separation, Materials 3, pp. 127, DOI: 10.3390/ma3010127.
  • 120. Seckler, D., R. Barker R., Amarasinghe U. (1999). Water scarcity in the twenty-first century, Int. J. Water Resour. Dev., 15, pp. 29-42, DOI: 10.1080/07900629948916.
  • 121. Selvan M.E., Keffer D., Cui S., Paddison S. (2010). Proton transport in water confined in carbon nanotubes: a reactive molecular dynamics study, Molecular Simulation, 36 (7-8), pp. 568-578, DOI: 10.1080/08927021003752887.
  • 122. Shah P., Murthy C.N. (2013). Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal, J. Membr. Sci., 437, pp. 90-98, DOI: 10.1016/j.memsci.2013.02.042.
  • 123. Shao D., Sheng G., Chen C., Wang X., Nagatsu M. (2010). Removal of polychlorinated biphenyls from aqueous solutions using betacyclodextrin grafted multiwalled carbon nanotubes, Chemosphere, 79 (7), pp. 679-685, DOI: 10.1016/j.chemosphere.2010.03.008.
  • 124. Shawky H.A., Chae S., Lin S., Wiesner M.R. (2011). Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment, Desalination, 272, pp. 46-50, DOI: 10.1016/j.desal.2010.12.051.
  • 125. Shen J. Nan, Yu C- Chao., Hui min R., Cong jie Gao., Van Der Bruggen B. (2013). Preparation and characterization of thin film nanocomposite membranes embedded with poly(methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization, J. Membr. Sci., 442, pp. 18-26, DOI: 10.1016/j.memsci.2013.04.018.
  • 126. Shen Y.-X., Saboe P.O., Sines I.T., Erbakan M., Kumar M. (2014). Biomimetic membranes: a review, J. Membr. Sci., 454, pp. 359-381, DOI: 10.1016/j.memsci.2013.12.019.
  • 127. Song X., Wang L., Tang C.Y., Wang Z., Gao C. (2015). Fabrication of carbon nanotubes incorporated double-skinned thin film nanocomposite membranes for enhanced separation performance and antifouling capability in forward osmosis process, Desalination, 369, pp. 1-9, DOI: 10.1016/j.desal.2015.04. 020.
  • 128. Stankovich S., Dikin D.A., Dommett G.H.B., Kohlhaas K.M., Zimney E.J., Stach E.A., Piner R.D., Nguyen S.T., Ruoff R.S. (2006). Graphene-based composite materials, Nature, 442, pp. 282-286, DOI: 10.1038/nature04969.
  • 129. Sweetman L.J., Nghiem L., Chironi I., Triani G., In Het Panhuis M., Ralph S.F. (2012). Synthesis, properties and water permeability of swnt buckypapers, J. Mater. Chem. A, 22, pp. 13800-13810, DOI: 10.1039/C2JM31382K.
  • 130. Sweetman L.J., Alcock, L.J., McArthur J.D., Stewart E.M., Triani G., Ralph S.F. (2013), Bacterial filtration using carbon nanotube/antibiotic buckypaper membranes, J. Nanomater, 2013, 1-11, DOI: 10.1155/2013/781212.
  • 131. Tian M., Wang R., Goh K, Liao Y., Fane A.G. (2015). Synthesis and characterization of high performance novel thin film nanocomposite PRO membranes with tiered nanofiber support reinforced by functionalized carbon nanotubes, J. Membr. Sci., 486, pp. 151-160, DOI: 10.1016.j.memsci.2015.03.054.
  • 132. Tiede K, Hassellov M., Breitbarth E., Chaudhry Q., Boxall A.B.A. (2009). Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles, J. Chromatogr., A, 1216, pp. 503-509, DOI: 10.1016/j.chroma.2008.09.008.
  • 133. Tiraferri A., Vecitis C.D., Elimelech M. (2011). Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties, ACS Appl. Mater. Interfaces, 3, pp. 2869-2877, DOI: 10.1021/am200536p.
  • 134. Tofighy, M.A., Mohammadi, T. (2011). Adsorption of divalent heavy metal ions from water using carbon nanotube sheets, J. Hazard. Mater., 185 (1), pp. 140-147, DOI: 10.1016/j.jhazmat.2010.09.008.
  • 135. Tunuguntla R.H., Henley R.Y., Yao Y.-C., Pham T.A., Wanunu M., Noy A. (2017). Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins, Science, 357, pp. 792-796, DOI: 10.1126/science.aan2438.
  • 136. Upadhyayula V.K., Deng S., Mitchell M.C., Smith G.B. (2009). Application of carbon nanotube technology for removal of contaminants in drinking water: a review, Sci. Total Environ., 408 (1), pp. 1-13, DOI: 10.1016/j.scitotenv.2009.09.027.
  • 137. Usman F.M., Luan H.-Y., Wang, Y., Huang H., An A.K., Jalil K.R. (2017). Increased adsorption of aqueous zinc species by Ar/O2 plasma-treated carbon nanotubes immobilized in hollow-fiber ultrafiltration membrane, Chem. Eng. J., 325, pp. 239-248, DOI: 10.1016/j.cej.2017.05.020.
  • 138. Vatanpour V., Esmaeili M., Hossein M., Abadi D. (2014). Fouling reduction and retention increment of polyethersulfone nanofiltration membranes embedded by amine-functionalized multi-walled carbon nanotubes, J. Memb. Sci., 466, pp. 70-81, DOI: 10.1016/j.memsci.2014.04.031.
  • 139. Vatanpour V., Zoqi N. (2017). Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes, Appl. Surf. Sci., 396, pp. 1478-1489, DOI: 10.1016/j.apsusc.2016.11.195.
  • 140. Vuković G.D., Marinković A.D., Čolić M., Ristić M.Đ., Aleksić R., Perić-Grujić A.A., Uskoković P.S. (2010). Removal of cadmium from aqueous solutions by oxidized and ethylenediamine functionalized multi-walled carbon nanotubes, Chem. Eng. J., 157 (1), pp. 238-248, DOI: 10.1016/j.cej.2009.11.026.
  • 141. Wang X., Li Q., Xie J., Jin Z., Wang J., Li Y., Jiang K., Fan S. (2009). Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates, Nano Lett., 9, pp. 3137-3141, DOI: 10.1021/nl901260b.
  • 142. Wang H., Yan N., Li Y., Zhou X., Chen J., Yu B., Gong M., Chen Q. (2012). Fe nanoparticle-functionalized multi-walled carbon nanotubes: one-pot synthesis and their applications in magnetic removal of heavy metal ions, J. Mater. Chem., 22 (18), pp. 9230-9236, DOI: 10.1039/C2JM16584H.
  • 143. Wang H., Dong Z., Na C. (2013). Hierarchical carbon nanotube membrane-supported gold nanoparticles for rapid catalytic reduction of p-nitrophenol, ACS Sustain. Chem. Eng., 1 (7), pp. 746-752, DOI: 10.1021/sc400048m.
  • 144. Wang S., Liang S., Liang P., Zhang X., Sun J., Wu S., Huang X. (2015a). In-situ combined dual-layer CNT/PVDF membrane for electrically-enhanced fouling resistance, J. Membr. Sci., 491, pp. 37-44, DOI: 10.1016/j.memsci.2015.05.014.
  • 145. Wang Y., Zhu J., Huang H., Cho H.-H. (2015b). Carbon nanotube composite membranes for microfiltration of pharmaceuticals and personal care products: capabilities and potential mechanisms, J. Membr. Sci., 479, pp. 165-174, DOI: 10.1016/j.memsci.2015.01.034.
  • 146. Wang Y., Ma J., Zhu J., Ye N., Zhang X., Huang H. (2016a). Multiwalled carbon nanotubes with selected properties for dynamic filtration of pharmaceuticals and personal care products, Water Res., 92, pp. 104-112, DOI: 10.1016/j.watres.2016.01.038.
  • 147. Wang J., Zhang P., Liang B., Liu Y., Xu T., Wang L., Cao B., Pan K. (2016b). Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment, ACS Appl. Mater. Interfaces, 8, pp. 6211-6218, DOI: 10.1021/acsami.5b12723.
  • 148. Wang, Y., Huang, H., Wei, X. (2018). Influence of wastewater precoagulation on adsorptive filtration of pharmaceutical and personal care products by carbon nanotube membranes, Chem. Eng. J., 333, pp. 66-75, DOI: 10.1016/j.cej.2017.09.149.
  • 149. WHO/UNICEF Joint Monitoring Programme. Progress on household drinking water, sanitation, and hygiene 2000-2017. Geneva, Switzerland; New York, NY: WHO; UNICEF, 2019, https://washdata.org
  • 150. Wu H., Tang B., Wu P. (2010a). MWNTs/Polyester thin film nanocomposite membrane: an approach to overcome the tradeoff effect between permeability and selectivity, J. Phys. Chem. C, 114, pp. 16395-16400, DOI: 10.1021/jp107280m.
  • 151. Wu H., Tang B., Wu P. (2010b). Novel ultrafiltration membranes prepared from a multiwalled carbon nanotubes/polymer-composite, J. Membr. Sci., 362, pp. 374-383, DOI: 10.1016/j. memsci.2010.06.064.
  • 152. www.fizyka.iss.com.pl/nanorurki/01nanorurki_.html (Accessed: 13.03.2021)
  • 153. Xiu Z.-M., Zhang Q.-B., Puppala H.L., Colvin V.L., Alvarez, P.J.J. (2012). Negligible particle-specific antibacterial activity of silver nanoparticles, Nano Lett., 12, pp. 4271-4275, DOI: 10.1021/nl301934w.
  • 154. Xue S.-M., Xu Z.-L, Tang Y.-J., Ji C.-H. (2016). Polypiperazine-amide nanofiltration membrane modified by different functionalized multiwalled carbon nanotubes (MWCNTs), ACS Appl. Mater. Interfaces, 8, pp. 19135-19144, DOI: 10.1021/acsami.6b05545.
  • 155. Yan X.M., Shi B.Y., Lu J.J., Feng C.H., Wang D.S., Tang H.X. (2008). Adsorption and desorption of atrazine on carbon nanotubes, J. Colloi. Interf. Sci., 321 (1), pp. 30-38, DOI: 10.1016/j.jcis.2008.01.047.
  • 156. Yang H.Y., Han Z.J., Yu S.F., Pey K.L., Ostrikov K., Karnik R. (2013a). Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification, Nat. Commun., 4, pp. 2220, DOI: 10.1038/ncomms3220.
  • 157. Yang, X., Lee, J., Yuan, L., Chae, S.-R., Peterson, V.K., Minett, A.I., Yin, Y., Harris, A.T. (2013b). Removal of natural organic matter in water using functionalised carbon nanotube buckypaper, Carbon, 59, pp. 160-166, DOI: 10.1016/j.carbon.2013.03.005.
  • 158. Yin J., Deng B. (2015). Polymer-matrix nanocomposite membranes for water treatment, J.Membr. Sci., 479, pp. 256-275, DOI: 10.1016/j.memsci.2014.11.019.
  • 159. Zarrabi H., Ehsan M., Vatanpour V., Shockravi A., Safarpour M. (2016). Improvement in desalination performance of thin film nanocomposite nanofiltration membrane using amine--functionalized multiwalled carbon nanotube, Desalination, 394, pp. 83-90, DOI: 10.1016/j.desal.2016.05.002.
  • 160. Zhang L., Chen H. (2011). Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes, Desalin. Water Treat., 34, pp. 19-24, DOI: 10.5004/dwt.2011.2801.
  • 161. Zhang J., Xu Z., Shan M., Zhou B., Li Y., Li B., Niu J., Qian X. (2013). Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes, J. Membr. Sci., 448, pp. 81-92, DOI: 10.1016/j.memsci.2013.07.064.
  • 162. Zhang Y., Wu B., Xu H., Liu H., Wang M., He Y., Pan B. (2016). Nanomaterials-enabled water and wastewater treatment, NanoImpact, 3-4, pp. 22-39, DOI: 10.1016/j.impact.2016.09.004.
  • 163. Zhao Y.L., Stoddart J.F. (2009). Noncovalent functionalization of single--walled carbon nanotubes, Acc. Chem. Res., 42, pp. 1161-1171, DOI: 10.1021/ar900056z.
  • 164. Zhao C., Xu X., Chen J., Yang F. (2013a). Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes, J. Environ. Chem. Eng., 1, pp. 349-354, DOI: 10.1016/j.jece.2013.05.014.
  • 165. Zhao H., Wu L., Zhou Z., Zhang L., Chen H. (2013b). Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated Graphene oxide, Phys. Chem. Chem. Phys., 15, pp. 9084-9092, DOI: 10.1039/c3cp50955a.
  • 166. Zhao H., Qiu S., Wu L., Zhang L., Chen H., Gao C. (2014). Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes, J. Membr. Sci., 450, pp. 249-256, DOI: 10.1016/j.memsci.2013.09.014.
  • 167. Zheng J., Li M., Yu K., Hu J., Zhang X., Wang L. (2017). Sulfonated multiwall carbon nanotubes assisted thin-film nanocomposite membrane with enhanced water flux and anti-fouling property, J. Membr. Sci., 524, pp. 344-353, DOI: 10.1016/j.memsci.2016.11.032.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-715f9e16-3cf8-4ab9-b3ad-725263401d33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.