Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The transformation of otherwise unused vibrational energy into electric energy through the use of piezoelectric energy harvesting devices has been the subject of numerous investigations. The mechanical part of such a device is often constructed as a cantilever beam with applied piezo patches. If the harvester is designed as a linear resonator the power output relies strongly on the matching of the natural frequency of the beam and the frequency of the harvested vibration which restricts the applicability since most vibrations which are found in built environments are broad-banded or even totally random. A possible approach to overcome this restriction is the use of permanent magnets to impose a nonlinear restoring force on the beam that leads to a broader operating range due to large amplitude motions over a large range of excitation frequencies. In this paper such a system is considered introducing a refined modeling with multiple spacial ansatz functions and a refined modeling of the magnet beam interaction. The corresponding probability density function in case of random excitation is calculated by the solution of the corresponding Fokker-Planck equation and compared with results from Monte Carlo simulations. Finally some measurements of ambient excitations are discussed.
Czasopismo
Rocznik
Tom
Strony
5--16
Opis fizyczny
Bibliogr. 21 poz., il., rys., wykr.
Twórcy
autor
- Technische Universität Berlin, Chair of Mechatronics and Machine Dynamics, Department of Applied Mechanics
autor
- Technische Universität Berlin, Chair of Mechatronics and Machine Dynamics, Department of Applied Mechanics
autor
- Technische Universität Berlin, Chair of Mechatronics and Machine Dynamics, Department of Applied Mechanics
Bibliografia
- 1. Adhikari, S., Friswell, M., and Inman, D. (2009). Piezoelectric energy harvesting from broadband random vibrations. Smart Materials and Structures, 18(11):115005.
- 2. Bergman, L. and Spencer, B. (1993). On the numerical solution of the fokker-planck equation for nonlinear stochastic systems. Nonlinear Dynamics, 4(4):357–372.
- 3. Bergman, L. A. and Masud, A. (2005). Application of multi-scale finite element methods to the solution of the fokker–planck equation. Computer Methods in Applied Mechanics and Engineering, 194(12):1513–1526.
- 4. Erturk, A., Hoffmann, J., and Inman, D. (2009). A piezomagnetoelastic structure for broadband vibration energy harvesting. Applied Physics Letters, 94.
- 5. Erturk, A. and Inman, D. J. (2008). A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. Journal of vibration and acoustics, 130(4):041002.
- 6. Gammaitoni, L., Neri, I., and Vocca, H. (2009). Nonlinear oscillators for vibration energy harvesting. Applied Physics Letters, 94(16):164102.
- 7. Gammaitoni, L., Neri, I., and Vocca, H. (2010). The benefits of noise and nonlinearity: Extracting energy from random vibrations. Chemical Physics, 375(2):435–438.
- 8. Halvorsen, E. (2008). Energy harvesters driven by broadband random vibrations. Journal of Microelectromechanical Systems, 17(5):1061–1071.
- 9. Harne, R. and Wang, K. (2013). A review of the recent research on vibration energy harvesting via bistable systems. Smart materials and structures, 22(2):023001.
- 10. Kracht, K. (2011). Die Untersuchung des Schwingungsverhaltens von Ölgemälden in Abhängigkeit der Alterung. Technische Universität.
- 11. Kumar, M., Chakravorty, S., Singla, P., and Junkins, J. L. (2009). The partition of unity finite element approach with hp-refinement for the stationary fokker–planck equation. Journal of Sound and Vibration, 327(1):144–162.
- 12. Litak, G., Friswell, M., and Adhikari, S. (2010). Magnetopiezoelastic energy harvesting driven by random excitations. Applied Physics Letters, 96(21):214103.
- 13. Litak, G., Kitio Kwuimy, C., Borowiec, M., and Nataraj, C. (2012). Performance of a piezoelectric energy harvester driven by air flow. Applied Physics Letters, 100(2):024103.
- 14. Martens, W., von Wagner, U., and Litak, G. (2013). Stationary response of nonlinear magneto-piezoelectric energy harvester systems under stochastic excitation. Eur. Phys. J. Special Topics, 222:1665–1673.
- 15. Martens, W., von Wagner, U., and Mehrmann, V. (2012). Calculation of high dimensional probability density functions of stochastically excited nonlinear mechanical systems. Nonlinear Dynamics, 67(3):2089–2099.
- 16. Moon, F. and Holmes, P. J. (1979). A magnetoelastic strange attractor. Journal of Sound and Vibration, 65(2):275–296.
- 17. Naess, A., Iourtchenko, D. V., and Mo, E. (2006). Response probability density functions of strongly non-linear systems by the path integration method. International Journal of Non-Linear Mechanics, 41(5):693–705.
- 18. Priya, S. (2007). Advances in energy harvesting using low profile piezoelectric transducers. Journal of electroceramics, 19(1):167–184.
- 19. Tang, L., Yang, Y., and Soh, C. K. (2010). Toward broadband vibration-based energy harvesting. Journal of Intelligent Material Systems and Structures, 21(18):1867–1897.
- 20. von Wagner, U. and Wedig, W. V. (2000). On the calculation of stationary solutions of multi-dimensional fokker–planck equations by orthogonal functions. Nonlinear Dynamics, 21(3):289–306.
- 21. Wedig, W. V. (2010). Nonlinear models of cars riding on bounded road realizations. The 1st Joint International Conference on Multibody System Dynamics - Lappeenranta.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34049869-1b16-43a1-99c6-39734805f05c