PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Controlled drug delivery systems for improved efficacy and bioavailability of flavonoids

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In past decades, experiments have been done to find the properties of plant polyphenols and their protective role in various diseases. In the present study, a brief review has been done on flavonoids’ protective role in different diseases and controlled drug delivery systems that can be feasible for improving flavonoids’ bioavailability as well as their efficacy in the biological system. Design/methodology/approach: Keywords searched in PubMed, and Google Scholar are “Flavones and cardiovascular diseases, flavones and neurodegenerative diseases, isoflavones and neurodegenerative diseases, Flavonoids and ageing, Flavonoids and diseases, total flavonoid content in vegetables, total flavonoid content in fruits, controlled drug delivery system and flavonoids” and the significant recent articles are selected for writing this review. Findings: Flavonoids are active components present in plant products that have been found to exert several health benefits, especially in retarding the deleterious effects of CVD, cancer, ageing, diabetes, and neurodegenerative diseases. The different clinical studies have also supported the above notions, and in this commentary, we have highlighted some important findings in the field of flavonoid research. Even though it has various bioactive efficacy, most flavonoids have less bioavailability, requiring controlled drug delivery methods that can also improve flavonoids' bioavailability and stability. pH-, electro-, infrared radiation-, redox-responsive methods of controlled drug release systems are some of the valuable techniques for improving the rate of drug release and bioavailability at the targeted site. Research limitations/implications: Research is warranted in this field for improving and developing various materials that can be utilized in the formation of scaffolds/polymers that improves drug loading and controlled drug release properties at the targeted site. Originality/value: This review will help the readers to design new strategies in flavonoid research with the help of controlled drug release methods for increased bioavailability and rate of drug release/ controlled drug release.
Rocznik
Strony
49--60
Opis fizyczny
Bibliogr. 63 poz., rys., tab.
Twórcy
  • Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, 603103, Tamilnadu, India
  • Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, 603103, Tamilnadu, India
  • Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, 603103, Tamilnadu, India
Bibliografia
  • [1] G. Agraharam, A. Girigoswami, K. Girigoswami, Myricetin: a Multifunctional Flavonol in Biomedicine, Current Pharmacology Reports 8 (2022) 48-61. DOI: https://doi.org/10.1007/s40495-021-00269-2
  • [2] G. Agraharam, A. Girigoswami, K. Girigoswami, Nanoencapsulated Myricetin to Improve Antioxidant Activity and Bioavailability: A Study on Zebrafish Embryos, Chemistry 4/1 (2022) 1-17. DOI: https://doi.org/10.3390/chemistry4010001
  • [3] A.F. Magalhães, A.M. Tozzi, E.G. Magalhães, M.A. Nogueira, S.C. Queiroz, Flavonoids from Lonchocarpus latifolius roots, Phytochemistry 55/7 (2000) 787-792. DOI: https://doi.org/10.1016/S0031-9422(00)00300-9
  • [4] A.N. Panche, A.D. Diwan, S.R. Chandra, Flavonoids: an overview, Journal of Nutritional Science 5 (2016) e47. DOI: https://doi.org/10.1017/jns.2016.41
  • [5] Y. Zhang, M. Li, H. Gao, B. Wang, X. Tongcheng, B. Gao, L. Yu, Triacylglycerol, fatty acid, and phytochemical profiles in a new red sorghum variety (Ji Liang No. 1) and its antioxidant and anti‐inflammatory properties, Food Science and Nutrition 7/3 (2019) 949-958. DOI: https://doi.org/10.1002/fsn3.886
  • [6] L. Han, Q. Fu, C. Deng, L. Luo, T. Xiang, H. Zhao, Immunomodulatory potential of flavonoids for the treatment of autoimmune diseases and tumour, Scandinavian Journal of Immunology 95/1 (2022) e13106. DOI: https://doi.org/10.1111/sji.13106
  • [7] M.A. Mofid Nakhaei, N. Mohammadi, S. Abediankenari, Effect of Epigallocatechin gallate (EGCG) on Production of Dendritic Cells from Peripheral Blood Monocytes, Journal of Mazandaran University of Medical Sciences 30/190 (2020) 1-10.
  • [8] K. Pallauf, N. Duckstein, G. Rimbach, A literaturę review of flavonoids and lifespan in model organisms, Proceedings of the Nutrition Society 76/2 (2017) 145-162. DOI: https://doi.org/10.1017/S0029665116000720
  • [9] C. Airoldi, B. La Ferla, G.D. Orazio, C. Ciaramelli, Flavonoids in the Treatment of Alzheimer’s and Other Neurodegenerative Diseases, Current Medicinal Chemistry 25/27 (2018) 3228-3246. DOI: https://doi.org/10.2174/0929867325666180209132125
  • [10] D.M. Kopustinskiene, V. Jakstas, A. Savickas, J. Bernatoniene, Flavonoids as Anticancer Agents, Nutrients 12/2 (2020) 457. DOI: https://doi.org/10.3390/nu12020457
  • [11] Z. Rasines-Perea, P.L. Teissedre, Grape Polyphenols’ Effects in Human Cardiovascular Diseases and Diabetes, Molecules 22/1 (2017) 68. DOI: https://doi.org/10.3390/molecules22010068
  • [12] A. Mandal, R. Bisht, D. Pal, A.K. Mitra, Chapter 4 - Diagnosis and drug delivery to the brain: novel strategies, in: A.K. Mitra, K. Cholkar, A. Mandal (eds), Emerging Nanotechnologies For Diagnostics, Drug Delivery And Medical Devices, Elsevier, 2017, 59-83. DOI: https://doi.org/10.1016/B978-0-323-42978-8.00004-8
  • [13] G.A. Soto-Chilaca, B. Mejía-Garibay, R. Navarro-Amador, N. Ramírez-Corona, E. Palou, A. López-Malo, Cinnamaldehyde-loaded chitosan nanoparticles: characterization and antimicrobial activity, Biointerface Research in Applied Chemistry 9/4 (2019) 4060-4065. DOI: https://doi.org/10.33263/BRIAC94.060065
  • [14] F. Ullah, F. Javed, A.N. Khan, M.H.A. Kudus, N. Jamila, A. Minhaz, H.M. Akil, Synthesis and surface modification of chitosan built nanohydrogel with antiviral and antimicrobial agent for controlled drug delivery, Biointerface Research in Applied Chemistry 9/6 (2019) 4439-4445. DOI: https://doi.org/10.33263/BRIAC96.439445
  • [15] F. Ullah, F. Javed, M.R. Zakaria, N. Jamila, R. Khattak, A.N. Khan, H.M. Akil, Determining the molecular-weight and interfacial properties of chitosan built nanohydrogel for controlled drug delivery applications, Biointerface Research in Applied Chemistry 9/6 (2019) 4452-4457. DOI: https://doi.org/10.33263/BRIAC96.452457
  • [16] D. Zindani, K. Kumar, Graphene-based polymeric nanocomposites: an introspection into functionalization, processing techniques and biomedical applications, Biointerface Research in Applied Chemistry 9/3 (2019) 3926-3933. DOI: https://doi.org/10.33263/BRIAC93.926933
  • [17] S. Sharif, A.A. Samani, E. Ahmadian, A. Eftekhari, H. Derakhshankhah, S. Jafari, M. Mokhtarpour, S.Z. Vahed, S. Salatin, S.M. Dizaj, Oral delivery of proteins and peptides by mucoadhesive nanoparticles, Biointerface Research in Applied Chemistry 9/2 (2019) 3849-3852. DOI: https://doi.org/10.33263/BRIAC92.849852
  • [18] S. Ghosh, K. Girigoswami, A. Girigoswami, Membrane-encapsulated camouflaged nanomedicines in drug delivery, Nanomedicine 14/15 (2019) 2067-2082. DOI: https://doi.org/10.2217/nnm-2019-0155
  • [19] L.R. Tefas, D.M. Muntean, L. Vlase, A.S. Porfire, M. Achim, I. Tomuță, Quercetin-loaded liposomes: formulation optimization through a D-optimal experimental design, Farmacia 63/1 (2015) 126-133.
  • [20] R. Jangde, D. Singh, Preparation and optimization of quercetin-loaded liposomes for wound healing, using response surface methodology, Artificial Cells, Nanomedicine, and Biotechnology 44/2 (2016) 635-641. DOI: https://doi.org/10.3109/21691401.2014.975238
  • [21] M.E. Tan, C.H. He, W. Jiang, C. Zeng, N. Yu, W. Huang, Z.G. Gao, J.G. Xing, Development of solid lipid nanoparticles containing total flavonoid extract from Dracocephalum moldavica L. and their therapeutic effect against myocardial ischemia-reperfusion injury in rats, International Journal of Nanomedicine 12 (2017)3253-3265. DOI: https://doi.org/10.2147/IJN.S131893
  • [22] C.-H. Liu, Y.-C. Huang, J.-W. Jhang, Y.-H. Liu, W.-C. Wu, Quercetin delivery to porcine cornea and sclera by solid lipid nanoparticles and nanoemulsion, RSC Advances 5/122 (2015) 100923-100933. DOI: https://doi.org/10.1039/C5RA17423F
  • [23] A. Girigoswami, W. Yassine, P. Sharmiladevi, V. Haribabu, K. Girigoswami, Camouflaged Nanosilver with Excitation Wavelength Dependent High Quantum Yield for Targeted Theranostic, Scientific Reports 8 (2018) 16459. DOI: https://doi.org/10.1038/s41598-018-34843-4
  • [24] A. Girigoswami, M. Ramalakshmi, N. Akhtar, S.K. Metkar, K. Girigoswami, ZnO Nanoflower petals mediated amyloid degradation - An in vitro electrokinetic potential approach, Materials Science and Engineering C 101 (2019) 169-178. DOI: https://doi.org/10.1016/j.msec.2019.03.086
  • [25] B. Das, A. Girigoswami, P. Pal, S. Dhara, Manganese oxide-carbon quantum dots nano-composites for fluorescence/magnetic resonance (T1) dual mode bioimaging, long term cell tracking, and ROS scavenging, Materials Science and Engineering C 102 (2019) 427-436. DOI: https://doi.org/10.1016/j.msec.2019.04.077
  • [26] K. Girigoswami, A. Girigoswami, A Review on the role of Nanosensors in Detecting Cellular miRNA Expression in Colorectal Cancer, Endocrine Metabolic and Immune Disorders-Drug Target 21/1 (2021) 12-26. DOI: https://doi.org/10.2174/1871530320666200515115723
  • [27] K. Girigoswami, M. Vishwanathan, R. Murugesan, A. Girigoswami, Studies on plymer-coated zinc oxide nanoparticles: UV-blocking efficacy and in vivo toxicity, Materials Science and Engineering C 56 (2015) 501-510. DOI: https://doi.org/10.1016/j.msec.2015.07.017
  • [28] P. Sharmiladevi, K. Girigoswami, V. Haribabu, A. Girigoswami, Nano-enabled Theranostics for Cancer, Materials Advances 2 (2021) 2876-2891. DOI: https://doi.org/10.1039/D1MA00069A
  • [29] A. Girigoswami, M. Mitra Ghosh, P. Pallavi, S. Ramesh, K. Girigoswami, Nanotechnology in Detection of Food Toxins – Focus on the Dairy Products, Biointerface Research in Applied Chemistry 11/6 (2021) 14155-14172. DOI: https://doi.org/10.33263/BRIAC116.1415514172
  • [30] Y. Jiang, D. Sun-Waterhouse, Y. Chen, F. Li, D. Li, Epigenetic mechanisms underlying the benefits of flavonoids in cardiovascular health and diseases: are long non-coding RNAs rising stars?, Critical Reviews in Food Science and Nutrition 62/14 (2022) 3855-3872. DOI: https://doi.org/10.1080/10408398.2020.1870926
  • [31] A.M. Mahmoud, R.J. Hernández Bautista, M.A. Sandhu, O.E. Hussein, Beneficial Effects of Citrus Flavonoids on Cardiovascular and Metabolic Health, Oxidative Medicine and Cellular Longevity 2019 (2019) 5484138. DOI: https://doi.org/10.1155/2019/5484138
  • [32] C.-H. Lee, T.-S. Jeong, Y.-K. Choi, B.-H. Hyun, G.-T. Oh, E.-H. Kim, J.-R. Kim, J.-I. Han, S.-H. Bok, Antiatherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits, Biochemical and Biophysical Research Communications 284/3 (2001) 681-688. DOI: https://doi.org/10.1006/bbrc.2001.5001
  • [33] M. Sánchez Macarro, J.P. Martínez Rodríguez, E. Bernal Morell, S. Pérez-Piñero, D. Victoria-Montesinos, A.M. García-Muñoz, F. Cánovas García, J. Castillo Sánchez, F.J. López-Román, Effect of a Combination of Citrus Flavones and Flavanones and Olive Polyphenols for the Reduction of Cardiovascular Disease Risk: An Exploratory Randomized, Double-Blind, Placebo-Controlled Study in Healthy Subjects, Nutrients 12/5 (2020) 1475. DOI: https://doi.org/10.3390/nu12051475
  • [34] R. Yousefi, M. Parandoosh, H. Khorsandi, N. Hosseinzadeh, M. Madani Tonekaboni, A. Saidpour, H. Babaei, A. Ghorbani, Grape seed extract supplementation along with a restricted-calorie diet improves cardiovascular risk factors in obese or overweight adult individuals: A randomized, placebo-controlled trial, Phytotherapy Research 35/2 (2021) 987-995. DOI: https://doi.org/10.1002/ptr.6859
  • [35] A. Greyling, T.C.L. Wolters, D.M.D. Bresser, S.H.P.P. Roerink, N.P. Riksen, T.P. Mulder, M.J. Rowson, M.T. Hopman, D.H.J. Thijssen, The acute effect of black tea consumption on resistance artery endothelial function in healthy subjects. A randomized controlled trial, Clinical Nutrition ESPEN 23 (2018) 41-47. DOI: https://doi.org/10.1016/j.clnesp.2017.10.011
  • [36] N. Kirch, L. Berk, Y. Liegl, M. Adelsbach, B.F. Zimmermann, P. Stehle, B. Stoffel-Wagner, N. Ludwig, A. Schieber, H.P. Helfrich, S. Ellinger, A nutritive dose of pure (-)-epicatechin does not beneficially affect increased cardiometabolic risk factors in overweight-to-obese adults-a randomized, placebo-controlled, double-blind crossover study, The American Journal of Clinical Nutrition 107/6 (2018) 948-956. DOI: https://doi.org/10.1093/ajcn/nqy066
  • [37] W.J. Hollands, H. Tapp, M. Defernez, N. Perez Moral, M.S. Winterbone, M. Philo, A.J. Lucey, M.E. Kiely, P.A. Kroon, Lack of acute or chronic effects of epicatechin-rich and procyanidin-rich apple extracts on blood pressure and cardiometabolic biomarkers in adults with moderately elevated blood pressure: a randomized, placebo-controlled crossover trial, The American Journal of Clinical Nutrition 108/5 (2018) 1006-1014. DOI: https://doi.org/10.1093/ajcn/nqy139
  • [38] D. Fan, Y. Alamri, K. Liu, M. MacAskill, P. Harris, M. Brimble, J. Dalrymple-Alford, T. Prickett, O. Menzies, A. Laurenson, T. Anderson, J. Guan, Supplementation of Blackcurrant Anthocyanins Increased Cyclic Glycine-Proline in the Cerebrospinal Fluid of Parkinson Patients: Potential Treatment to Improve Insulin-Like Growth Factor-1 Function, Nutrients 10/6 (2018) 714. DOI: https://doi.org/10.3390/nu10060714
  • [39] M. Benlloch, M.C. Ballester, E. Drehmer, J.L. Platero, S.C. Juliá, M.M.L. Rodríguez, J.J. Ceron, A. Tvarijonaviciute, M.Á. Navarro, M.L. Moreno, J.E.D.L.R. Ortí, Possible Reduction of Cardiac Risk after Supplementation with Epigallocatechin Gallate and Increase of Ketone Bodies in the Blood in Patients with Multiple Sclerosis, A Pilot Study, Nutrients 12/12 (2020) 3792. DOI: https://doi.org/10.3390/nu12123792
  • [40] J. Levin, S. Maaß, M. Schuberth, A. Giese, W.H. Oertel, W. Poewe, C. Trenkwalder, G.K. Wenning, U. Mansmann, M. Südmeyer, K. Eggert, B. Mollenhauer, A. Lipp, M. Löhle, J. Classen, A. Münchau, J. Kassubek, F. Gandor, D. Berg, S. Egert-Schwender, C. Eberhardt, F. Paul, K. Bötzel, B.E. Wagner, H.J. Huppertz, I. Ricard, G.U. Höglinger, Safety and efficacy of epigallocatechin gallate in multiple system atrophy (PROMESA): a randomised, double-blind, placebocontrolled trial, Lancet Neurology 18/8 (2019) 724-735. DOI: https://doi.org/10.1016/S1474-4422(19)30141-3
  • [41] Y.X. You, S. Shahar, N.F. Rajab, H. Haron, H.M. Yahya, M. Mohamad, N.C. Din, M.Y. Maskat, Effects of 12 Weeks Cosmos caudatus Supplement among Older Adults with Mild Cognitive Impairment: A Randomized, Double-Blind and Placebo-Controlled Trial, Nutrients 13/2 (2021) 434. DOI: https://doi.org/10.3390/nu13020434
  • [42] T.S. Sian, U.S.U Din, C.S. Deane., K. Smith, A. Gates, J.N. Lund, J.P. Williams, R. Rueda, S.L. Pereira, B.E. Phillips, P.J. Atherton, Cocoa Flavanols Adjuvant to an Oral Nutritional Supplement Acutely Enhances Nutritive Flow in Skeletal Muscle without Altering Leg Glucose Uptake Kinetics in Older Adults, Nutrients 13/5 (2021) 1646. DOI: https://doi.org/10.3390/nu13051646
  • [43] N.H. Liberona, R.G. Domínguez, E. Vegas, P. Riso, C. Del Bo', S. Bernardi, G. Peron, S. Guglielmetti, G. Gargari, P.A. Kroon, A. Cherubini, C.A. Lacueva, Increased Intestinal Permeability in Older Subjects Impacts the Beneficial Effects of Dietary Polyphenols by Modulating Their Bioavailability, Journal of Agricultural and Food Chemistry 68/44 (2020) 12476- 12484. DOI: https://doi.org/10.1021/acs.jafc.0c04976
  • [44] M.M. McDermott, M.H. Criqui, K. Domanchuk, L. Ferrucci, J.M. Guralnik, M.R. Kibbe, K. Kosmac, C.M. Kramer, C. Leeuwenburgh, L. Li, D. Lloyd-Jones, C.A. Peterson, T.S. Polonsky, J.H. Stein, R. Sufit, L.V. Horn, F. Villarreal, D. Zhang, L. Zhao, L. Tian, Cocoato Improve Walking Performance in Older People With Peripheral Artery Disease: The Cocoa-Pad Pilot Randomized Clinical Trial, Circulation Research 126/5 (2020) 589-599. DOI:https://doi.org/10.1161/CIRCRESAHA.119.315600
  • [45] S. De, A. Gopikrishna, V. Keerthana, A. Girigoswami, K. Girigoswami, An Overview of Nano formulated Nutraceuticals and its therapeutic approaches, Current Nutrition Food Science 17/4 (2021) 392-407. DOI: https://doi.org/10.2174/1573401316999200901120458
  • [46] J.N. Losso, J.W. Finley, N. Karki, A.G. Liu, A.Prudente, R. Tipton, Y. Yu, F.L. Greenway, Pilot Study of the Tart Cherry Juice for the Treatment of Insomnia and Investigation of Mechanisms, American Journal of Therapeutics 25/2 (2018) e194-e201. DOI: https://doi.org/10.1097/MJT.0000000000000584
  • [47] V.A. do Rosario, C. Chang, J. Spencer, T. Alahakone, S. Roodenrys, M. Francois, K.W. Green, N. Hölzel, D.S. Nichols, K. Kent, D. Williams, I.M.R. Wright, K.Charlton, Anthocyanins attenuate vascular and inflammatory responses to a high fat high energy meal challenge in overweight older adults: A cross-over, randomized, double-blind clinical trial, Clinical Nutrition 40/3 (2021) 879-889. DOI: https://doi.org/10.1016/j.clnu.2020.09.041
  • [48] V.A. do Rosario, Z. Fitzgerald, S. Broyd, A. Paterson, S. Roodenrys, S. Thomas, V. Bliokas, J. Potter, K. Walton, K.W. Green, M. Yousefi, D. Williams, I.M.R. Wright, K. Charlton, Food anthocyanins decrease concentrations of TNF-α in older adults with mild cognitive impairment: A randomized, controlled, double blind clinical trial, Nutrion, Metabolism and Cardiovascular Diseases 31/3 (2021) 950-960. DOI: https://doi.org/10.1016/j.numecd.2020.11.024
  • [49] M. Movahedian, H. Tabibi, S. Atabak, M. Hedayati, L. Rahmani, Z. Yari, Effects of Soy Isoflavones on Glycemic Parameters and Blood Pressure in Peritoneal Dialysis Patients: A Randomized, Double Blind, Placebo-Controlled Trial, Iranian Journal of Kidney Diseases 15/2 (2021) 134-142.
  • [50] K.H. Miean, S. Mohamed, Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin, and Apigenin) Content of Edible Tropical Plants, Journal of Agricultural and Food Chemistry 49/6 (2001) 3106-3112. DOI: https://doi.org/10.1021/jf000892m
  • [51] E. Sariburun, S. Şahin, C. Demir, C. Türkben, V. Uylaşer, Phenolic Content and Antioxidant Activity of Raspberry and Blackberry Cultivars, Journal of Food Science 75/4 (2010) C328-C335. DOI: https://doi.org/10.1111/j.1750-3841.2010.01571.x
  • [52] E. Boedtkjer, S.F. Pedersen, The Acidic Tumor Microenvironment as a Driver of Cancer, Annual Review of Physiology 82/1 (2020) 103-126. DOI: https://doi.org/10.1146/annurev-physiol-021119-034627
  • [53] M. Kundu, P. Sadhukhan, N. Ghosh, S. Chatterjee, P. Manna, J. Das, P.C. Sil, pH-responsive and targeted delivery of curcumin via phenylboronic acid-functionalized ZnO nanoparticles for breast cancer therapy, Journal of Advanced Research 18 (2019) 161-172. DOI: https://doi.org/10.1016/j.jare.2019.02.036
  • [54] A.C. de Oliveira, G.R. de Lima, R.S. Klein, P.R. Souza, B.H. Vilsinski, F.P. Garcia, C.V. Nakamura, A.F. Martins, Thermo-and pH-responsive chitosan/gellangum hydrogels incorporated with the β-cyclodextrin/curcumin inclusion complex for efficient curcumin delivery, Reactive and Functional Polymers 165 (2021) 104955. DOI:https://doi.org/10.1016/j.reactfunctpolym.2021.104955
  • [55] M. Dey, B. Ghosh, T.K. Giri, Enhanced intestinal stability and pH sensitive release of quercetin in GIT through gellan gum hydrogels, Colloids and SurfacesB: Biointerfaces 196 (2020) 111341. DOI: https://doi.org/10.1016/j.colsurfb.2020.111341
  • [56] C. Tan, H. Fan, J. Ding, C. Han, Y. Guan, F. Zhu, H. Wu, Y. Liu, W. Zhang, X. Hou, S. Tan, Q. Tang, ROS-responsive nanoparticles for oral delivery of luteolin and targeted therapy of ulcerative colitis by regulating pathological microenvironment, Materials Today Bio 14 (2022) 100246. DOI: https://doi.org/10.1016/j.mtbio.2022.100246
  • [57] Y. Liu, H. Hong, J. Xue, J. Luo, Q. Liu, X. Chen, Y. Pan, J. Zhou, Z. Liu, T. Chen, Near-Infrared Radiation-Assisted Drug Delivery Nanoplatform to Realize Blood-Brain Barrier Crossing and Protection for Parkinsonian Therapy, ACS Applied Materials and Interfaces 13/31 (2021) 37746-37760. DOI: https://doi.org/10.1021/acsami.1c12675
  • [58] Z. Zhang, S. Xu, Y. Wang, Y. Yu, F. Li, H. Zhu, Y. Shen, S. Huang, S. Guo, Near-infrared triggered codelivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells, Journal of Colloid and Interface Science 509 (2018) 47-57. DOI: https://doi.org/10.1016/j.jcis.2017.08.097
  • [59] A.M. Croitoru, Y. Karaçelebi, E. Saatcioglu, E. Altan, S. Ulag, H.K. Aydoğan, A. Sahin, L. Motelica, O. Oprea, B.M. Tihauan, R.C. Popescu, D. Savu, R. Trusca, D. Ficai, O. Gunduz, A. Ficai, Electrically Triggered Drug Delivery from Novel Electrospun Poly(Lactic Acid)/Graphene Oxide/Quercetin Fibrous Scaffolds for Wound Dressing Applications, Pharmaceutics 13/7 (2021) 957. DOI: https://doi.org/10.3390/pharmaceutics13070957
  • [60] E. Ugazio, L. Gastaldi, V. Brunella, D. Scalarone, S.A. Jadhav, S. Oliaro-Bosso, D. Zonari, G. Berlier, I. Miletto, S. Sapino, Thermoresponsive mesoporous silica nanoparticles as a carrier for skin delivery of quercetin, International Journal of Pharmaceutics 511/1 (2016) 446-454. DOI: https://doi.org/10.1016/j.ijpharm.2016.07.024
  • [61] G. Ju, X. Liu, R. Li, M. Li, Z. Qin, X. Yin, Temperature-controlled release of curcumin from thermosensitive PVA/CurM nanofibrous membranes with antibacterial activity, Colloid and Polymer Science 299/12 (2021) 1955-1966. DOI: https://doi.org/10.1007/s00396-021-04912-8
  • [62] P. Sharmiladevi, N. Akhtar, V. Haribabu, K. Girigoswami, S. Chattopadhyay, A. Girigoswami, Excitation Wavelength Independent Carbon-Decorated Ferrite Nanodots for Multimodal Diagnosis and Stimuli Responsive Therapy, ACS Applied Bio Materials 2/4 (2019) 1634-1642. DOI: https://doi.org/10.1021/acsabm.9b00039
  • [63] L. Zhang, S. Zhang, J. Xu, Y. Li, J. He, Y. Yang, T. Huynh, P. Ni, G. Duan, Z. Yang, R. Zhou, Low-dose X-ray Responsive Diselenide Nanocarriers for Effective Delivery of Anticancer Agents, ACS Applied Materials and Interfaces 12/39 (2020) 43398-43407. DOI: https://doi.org/10.1021/acsami.0c11627
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d7329ea-27a6-4436-a49d-94c3d3305d6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.