PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intelligent machining: real-time tool condition monitoring and intelligent adaptive control systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Unmanned manufacturing systems has recently gained great interest due to the ever increasing requirements of optimized machining for the realization of the fourth industrial revolution in manufacturing ‘Industry 4.0’. Real-time tool condition monitoring (TCM) and adaptive control (AC) machining system are essential technologies to achieve the required industrial competitive advantage, in terms of reducing cost, increasing productivity, improving quality, and preventing damage to the machined part. New AC systems aim at controlling the process parameters, based on estimating the effects of the sensed real-time machining load on the tool and part integrity. Such an aspect cannot be directly monitored during the machining operation in an industrial environment, which necessitates developing new intelligent model-based process controllers. The new generations of TCM systems target accurate detection of systematic tool wear growth, as well as the prediction of sudden tool failure before damage to the part takes place. This requires applying advanced signal processing techniques to multi-sensor feedback signals, in addition to using ultra-high speed controllers to facilitate robust online decision making within the very short time span (in the order of 10 ms) for high speed machining processes. The development of new generations of Intelligent AC and TCM systems involves developing robust and swift communication of such systems with the CNC machine controller. However, further research is needed to develop the industrial internet of things (IIOT) readiness of such systems, which provides a tremendous potential for increased process reliability, efficiency and sustainability.
Rocznik
Strony
5--17
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
autor
  • Aerospace Structures, Materials and Manufacturing, National Research Council Canada, Montreal, QC, Canada
autor
  • Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
  • Aerospace Structures, Materials and Manufacturing, National Research Council Canada, Montreal, QC, Canada
autor
  • Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
Bibliografia
  • [1] UHLMANN E., HOHWIELER E., GEISERt C., 2017, Intelligent production systems in the era of industrie 4.0-changing mindsets and business models, Journal of Machine Engineering, 17/2, 5-24.
  • [2] TETI R., JEMIELNIAK K., O’DONNELL G., DORNFELD D., 2010, Advanced monitoring of machining operations, CIRP Annals-Manufacturing Technology, 59/2, 717-739.
  • [3] ZUPERL U., KIKER E., JEZERNIK K., 2006, Adaptive force control in high-speed machining by using a system of neural networks, 2006 IEEE International Symposium on Industrial Electronics, IEEE.
  • [4] ZUPERL U., CUS F., REIBENSCHUH M., 2010, Modeling and adaptive force control of milling by using artificial techniques, Journal of Intelligent Manufacturing, 23/5, 1805-1815.
  • [5] ALTINTAS Y., 2014, Adaptive control, CIRP Encyclopedia of Production Engineering, Springer Berlin Heidelberg, 17-19.
  • [6] ISO8688-2, 1989, Tool life testing in milling – part 2: End milling, International Organization for Standardization, Geneva, Switzerland, International Standard, first edition.
  • [7] ALTINTAS Y., 2012, Manufacturing automation: Metal cutting mechanics, machine tool vibrations, and cnc design, University of Cambridge press.
  • [8] GRZESIK W., 2008, Advanced machining processes of metallic materials: Theory, modelling and applications, Elsevier.
  • [9] ZHANG D., 2011, An adaptive procedure for tool life prediction in face milling, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, p. 1350650111414332.
  • [10] LIU Z Q., AI X., ZHANG H., WANG Z.T., WAN Y., 2002, Wear patterns and mechanisms of cutting tools in high-speed face milling, Journal of Materials Processing Technology, 129/1-3, 222-226.
  • [11] LEI X., 2006, Typical phases of pre-failure damage in granitic rocks under differential compression, Geological Society, London, Special Publications, 261/1, 11-29.
  • [12] KONDO E., SHIMANA K., 2012, Monitoring of prefailure phase and detection of tool breakage in micro-drilling operations, Procedia CIRP, 1/0, 581-586.
  • [13] HSUEH Y-W., YANG C-Y., 2008, Prediction of tool breakage in face milling using support vector machine, Int J Adv Manuf Technol, 37/9-10, 872-880.
  • [14] WANG S-M., HO C-D., TSAI P-C., YEN C., 2014, Study of an efficient real-time monitoring and control system for bue and cutter breakage for cnc machine tools, Int J Precis Eng Manuf, 15/6, 1109-1115.
  • [15] WANG L., GAO R.X., 2006, Condition monitoring and control for intelligent manufacturing, Springer.
  • [16] BHUIYAN M., CHOUDHURY I., 2014, 13.22-review of sensor applications in tool condition monitoring in machining, Comprehensive Materials Processing, 13, 539-569.
  • [17] ENTEZARI-MALEKI R., REZAEI A., MINAEI-BIDGOLI B., 2009, Comparison of classification methods based on the type of attributes and sample size, Journal of Convergence Information Technology, 4/3, 94-102.
  • [18] SADEK A., MESHREKI M., ATTIA M. H., 2016, Adaptive and smart machining: Intelligent model-based online adaptive control system for drilling of frps, Proc. Wiener Produktionstechnik Kongress, Adaptive & Smart Manufacturing.
  • [19] SADEK A., SHI B., MESHREKI M., DUQUESNE J., ATTIA M.H., 2015, Prediction and control of drilling-induced damage in fibre-reinforced polymers using a new hybrid force and temperature modelling approach, CIRP Annals, 64/1, 89-92.
  • [20] RAWAT S., AND ATTIA H., 2009, Characterization of the dry high speed drilling process of woven composites using machinability maps approach, CIRP Annals, 58/1, 105-108.
  • [21] HASSAN M., SADEK A., ATTIA M.H., THOMSON V., 2017, A novel generalized approach for real-time tool condition monitoring, Journal of Manufacturing Science and Engineering, 140/2, 021010-021010-021018.
  • [22] HASSAN M., SADEK A., DAMIR A., ATTIA H., THOMSON V., 2017, Real-time tool breakage detection using k-nearest neighbor method in milling operations, Canadian Aeronautics and Space Institute – CASI 63rd Aeronautics conference AERO17.
  • [23] HASSAN M., SADEK A., DAMIR A., ATTIA M., THOMSON V., 2016, Tool pre-failure monitoring in intermittent cutting operations, Proc. ASME 2016 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, V002T002A049-V002T002A049.
  • [24] LIU C., WU J-Q., LIU H-L., LI G-H., TAN G-Y., 2015, Geometry features of breakage section and variation of cutting force for end mills after brittle breakage, Int J Adv Manuf Technol, 1-14.
  • [25] AMER W., GROSVENOR R.I., PRICKETT P.W., 2006, Sweeping filters and tooth rotation energy estimation (tree) techniques for machine tool condition monitoring, International Journal of Machine Tools and Manufacture, 46/9, 1045-1052.
  • [26] PRICKETT P.W., GROSVENOR R.I., 2007, A microcontroller-based milling process monitoring and management system, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221/2, 357-362.
  • [27] SIDDIQUI R.A., AMER W., AHSAN Q., GROSVENOR R.I., PRICKETT P. W., 2007, Multi-band infinite impulse response filtering using microcontrollers for e-monitoring applications, Microprocessors and Microsystems, 31/6, 370-380.
  • [28] ABELLAN-NEBOT J., ROMERO SUBIRÓN F., 2010, A review of machining monitoring systems based on artificial intelligence process models, Int J Adv Manuf Technol, 47/1-4, 237-257.
  • [29] HASE A., WADA M., KOGA T., MISHINA H., 2014, The relationship between acoustic emission signals and cutting phenomena in turning process. The International Journal of Advanced Manufacturing Technology, 70/5-8, 947–955.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-467be8eb-357a-45e6-a698-5f0fa48165bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.