PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the maintenance on protective properties of firefighters’ helmets under low-impact energy condition

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Helmets are included in the group of personal protective equipment and are used when other hazard control methods are insufficient. They protect against head injuries caused by various environmental factors, e.g. mechanical and thermal loads, as well as flames. Injuries due to falling debris are serious and may be fatal. Taking that into consideration, the basic role of helmets is to absorb impact energy and dissipate it over a greater surface to decrease forces acting on the head. The following work aims to study the influence of maintenance on the energy absorption capacity of firefighters’ helmets. Design/methodology/approach: The research was conducted on two helmet models that differ in design, both new ones and maintained for 4 years. Shells of one group of helmets were manufactured using an injection moulding method, while shells of the second group were made as a laminate. Tests were carried out using a drop hammer with the impact energy at the level of 30 J. Findings: Maintenance had a significant influence on the energy absorption mechanism. An increase in fragility and decrease in stiffness of a shell was observed, which reduces the protective properties of helmets. It constitutes a real hazard for firefighters. Research limitations/implications: The research results refer to specific helmet models. The influence of the maintenance on the protective properties of other models of helmets may be different. Practical implications: The research results indicate that a visual assessment of firefighters’ helmets’ technical condition is insufficient. The durability of helmets should also be determined by the time of use. Originality/value: The paper contains original research results. According to the author’s knowledge, the results of the influence of maintenance on the protective properties of firefighters’ helmets have not been presented in any scientific publication.
Rocznik
Strony
49--57
Opis fizyczny
Bibliogr. 35 poz., tab., wykr., fot.
Twórcy
autor
  • Faculty of Safety Engineering and Civil Protection, Fire University, 52/54 Słowackiego Street, 01-629 Warszawa, Poland
Bibliografia
  • [1] A.N. Gattuso, Common Issues of Compliance with Personal Protective Equipment for Construction Workers, 2021.
  • [2] Recommended practices for safety and health programs (OSHA 3885), 2016. Available from: https://www.osha.gov/shpguidelines/ (access in: 16.07.2022)
  • [3] PN-EN 443:2008: Helmets for fire fighting in buildings and other structures.
  • [4] I. Sutton, Chapter 6 - Personal protective equipment, in: I. Sutton (ed), Plant Design and Operations, Gulf Publishing Company, Houston, TX, 2015, 127-137. DOI: https://doi.org/10.1016/B978-0-323-29964-0.00006-8
  • [5] S. Krzemińska, M. Szewczyńska, PAH contamination of firefighter protective clothing and cleaning effectiveness, Fire Safety Journal 131 (2022) 103610. DOI: https://doi.org/10.1016/j.firesaf.2022.103610
  • [6] K. Muthukumar, K. Amirtham, A. Sundaramahalingam, N.K. Mishra, Fabrication of natural fiber based industrial safety helmet, Materials Today: Proceedings 64/1 (2022) 720-724. DOI: https://doi.org/10.1016/j.matpr.2022.05.195
  • [7] K. Park, J.F. Sy, G.P. Horn, R.M. Kesler, M.N. Petrucci, K.S. Rosengren, E.T. Hsiao-Wecksler, Assessing gait changes in firefighters after firefighting activities and while carrying asymmetric loads, Applied Ergonomics 70 (2018) 44-50. DOI: https://doi.org/10.1016/j.apergo.2018.01.016
  • [8] Newman JA., Biomechanics of head trauma: head protection, in: A.M. Nahum, J.W. Melvin (eds), Accidental Injury, Springer, New York, NY, 2002, 303-323. DOI: https://doi.org/10.1007/978-0-387-21787-1_14
  • [9] R.C. Butz, B.M. Knowles, J.A. Newman, C.R. Dennison, Effects of external helmet accessories on biomechanical measures of head injury risk: An ATD study using the HYBRIDIII headform, Journal of Biomechanics 48/14 (2015) 3816-3824. DOI: https://doi.org/10.1016/j.jbiomech.2015.09.032
  • [10] A. Walczak, D. Pieniak, R. Kamocka-Bronisz, Reliability and failure studies of firefighters’ helmets in simulated operational conditions, Journal of KONBiN 50/4 (2020) 31-40. DOI: https://doi.org/10.2478/jok-2020-0072
  • [11] K. Baszczyński, The effect of temperature on the capability of industrial safety helmets to absorb impact energy, Engineering Failure Analysis 46 (2014) 1-8. DOI: https://doi.org/10.1016/j.engfailanal.2014.07.006
  • [12] T.D. Smith, D.M. DeJoy, M.-A. Dyal, Safety specific transformational leadership, safety motivation and personal protective equipment use among firefighters, Safety Science 131 (2020) 104930. DOI: https://doi.org/10.1016/j.ssci.2020.104930
  • [13] L. Markoviová, V. Zatkalíková, The effect of UV aging on structural polymers, IOP Conference Series: Materials Science and Engineering 465 (2019) 012004. DOI: https://doi.org/10.1088/1757-899X/465/1/012004
  • [14] L. Sang, C. Wang, Y. Wang, W. Hou, Effects of hydrothermal aging on moisture absorption and property prediction of short carbon fiber reinforced polyamide 6 composites, Composites Part B: Engineering 153 (2018) 306-314. DOI: https://doi.org/10.1016/j.compositesb.2018.08.138
  • [15] V.-T. Do, H.-D. Nguyen-Tran, D.-M. Chun, Effect of polypropylene on the mechanical properties and water absorption of carbon-fiber-reinforced-polyamide-6/polypropylene composites, Composite Structures 150 (2016) 240-245. DOI: https://doi.org/10.1016/j.compstruct.2016.05.011
  • [16] N. Abacha, M. Kubouchi, T. Sakai, Diffusion behavior of water in polyamide 6 organoclay nanocomposites, Express Polymer Letters 3/4 (2009) 245-255. DOI: https://doi.org/10.3144/expresspolymlett.2009.31
  • [17] K.R. Rajeesh, R. Gnanamoorthy, R. Velmurugan, Effect of humidity on the indentation hardness and flexural fatigue behavior of polyamide 6 nanocomposite, Materials Science and Engineering: A 527/12 (2010) 2826-2830. DOI: https://doi.org/10.1016/j.msea.2010.01.070
  • [18] Shreepannaga, M.V. Kini, D. Pai, The ageing effect on static and dynamic mechanical properties of fiber reinforced polymer composites under marine environment - A Review, Materials Today: Proceedings 52/3 (2022) 689-696. DOI: https://doi.org/10.1016/j.matpr.2021.10.084
  • [19] T. Lu, E. Solis-Ramos, Y.B. Yi, M. Kumosa, Particle removal mechanisms in synergistic aging of polymers and glass reinforced polymer composites under combined UV and water, Composites Science and Technology 153 (2017) 273-281. DOI: https://doi.org/10.1016/j.compscitech.2017.10.028
  • [20] T. Lu, E. Solis-Ramos, Y.B. Yi, M. Kumosa, Synergistic environmental degradation of glass reinforced polymer composites, Polymer Degradation and Stability 131 (2016) 1-8. DOI: https://doi.org/10.1016/j.polymdegradstab.2016.06.025
  • [21] A. Malpot, F. Touchard, S. Bergamo, Effect of relative humidity on mechanical properties of a woven thermoplastic composite for automotive application, Polymer Testing 48 (2015) 160-168. DOI: https://doi.org/10.1016/j.polymertesting.2015.10.010
  • [22] S.A. Grammatikos, M. Evernden, J. Mitchels, B. Zafari, J.T. Mottram, G.C. Papanicolaou, On the response to hygrothermal aging of pultruded FRPs used in the civil engineering sector, Materials and Design 96 (2016) 283-295. DOI: https://doi.org/10.1016/j.matdes.2016.02.026
  • [23] I. Pivdiablyk, P. Rozycki, F. Jacquemin, L. Gornet, S. Auger, Experimental analysis of mechanical performance of glass fiber reinforced polyamide 6 under varying environmental conditions, Composite Structures 245 (2020) 112338. DOI: https://doi.org/10.1016/j.compstruct.2020.112338
  • [24] D. Pieniak, A. Walczak, M. Oszust, K. Przystupa, R. Kamocka-Bronisz, R. Piec, G. Dzień, J. Selech, D. Ulbrich, Influence of thermal shocks on residual static strength, impact strength and elasticity of polymer-composite materials used in firefighting helmets, Materials 15/1 (2022) 57. DOI: https://doi.org/10.3390/ma15010057
  • [25] A. Walczak, W. Rogula-Kozłowska, D. Pieniak, P. Piątek, W. Wąsik, Influence of environmental conditions on mechanical properties of personal protective equipment. Scientific Reports of Fire University 1/88 (2023) 27-43. DOI: https://doi.org/10.5604/01.3001.0053.9742
  • [26] S.K. Bhudolia, G. Gohel, E.S.B. Subramanyam, K.F. Leong, P. Gerard, Enhanced impact energy absorption and failure characteristics of novel fully thermoplastic and hybrid composite bicycle helmet shells, Materials and Design 209 (2021) 110003. DOI: https://doi.org/10.1016/j.matdes.2021.110003
  • [27] P.K. Pinnoji, P. Mahajan, Analysis of impact-induced damage and delamination in the composite shell of a helmet, Materials and Design 31/8 (2010) 3716-3723. DOI: https://doi.org/10.1016/j.matdes.2010.03.011
  • [28] G. Zheng, X. Zhang, S. Li, T. Pang, Q. Li, G. Sun, Correlation between kinematics and biomechanics of helmeted head under different impact conditions, Composite Structures 291 (2022) 115514. DOI: https://doi.org/10.1016/j.compstruct.2022.115514
  • [29] M. Palomar, E. Lozano-Mínguez, M. Rodríguez-Millán, M.H. Miguélez, E. Giner, Relevant factors in the design of composite ballistic helmets, Composite Structures 201 (2018) 49-61. DOI: https://doi.org/10.1016/j.compstruct.2018.05.076
  • [30] J. Gao, N. Kedir, C.D. Kirk, J. Hernandez, J. Wang, S. Paulson, X. Zhai, T. Horn, G. Kim, J. Gao, K. Fezzaa, F. De Carlo, P. Shevchenko, T.N. Tallman, R. Sterkenburg, G.R. Palmese, W. Chen, Real-time damage characterization for GFRCs using high-speed synchrotron X-ray phase contrast imaging, Composites Part B: Engineering 207 (2021) 108565. DOI: https://doi.org/10.1016/j.compositesb.2020.108565
  • [31] J. Bieniaś, B. Surowska, P. Jakubczak, Influence of repeated impact on damage growth in fiber reinforced polymer composites, Eksploatacja i Niezawodność – Maintenance and Reliability 17/2 (2015) 194-198. DOI: https://doi.org/10.17531/ein.2015.2.4
  • [32] W.A. de Morais, S.N. Monteiro, J.R.M. d’Almeida, Evaluation of repeated low energy impact damage in carbon–epoxy composite materials, Composite Structures 67/3 (2005) 307-315. DOI: https://doi.org/10.1016/j.compstruct.2004.01.012
  • [33] T. Szymczak, Z.L. Kowalewski, Strength tests of polymer-glass composite to evaluate its operational suitability for ballistic shield plates, Eksploatacja i Niezawodność – Maintenance and Reliability 22/4 (2020) 592-600. DOI: https://doi.org/10.17531/ein.2020.4.2
  • [34] J.-X. Gao, Z.-W. An, Q. Ma, X.-Z. Bai, Residual strength assessment of wind turbine rotor blade composites under combined effects of natural aging and fatigue loads, Eksploatacja i Niezawodność – Maintenance and Reliability 22/4 (2020) 601-609. DOI: https://doi.org/10.17531/ein.2020.4.3
  • [35] V. Kostopoulos, Y.P. Markopoulos, G. Giannopoulos, D.E. Vlachos, Finite element analysis of impact damage of composite motorcycle safety helmets, Composites Part B: Engineering 33/2 (2002) 99-107. DOI: https://doi.org/10.1016/S1359-8368(01)00066-X
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a784c69-3374-4ecc-b404-397f83e2aa98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.