PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CFD simulations of influence of steam in gasification agent on parameters of UCG process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Underground coal gasification (UCG) is considered to be a perspective and constantly developing technology. Nevertheless it is a very complex and technically difficult process, which results depend on many variables. Mathematical models enable detailed analysis of UCG process - for example - give possibility of prediction of syngas composition depending on applied gasification medium. In practice, mixtures of oxygen, air and steam are the most frequently used as converting agents. Steam is injected to the reactor in order to obtain combustible components. Nevertheless higher concentrations of steam create a problem of reduction of temperature in reactor. This issue of amount of steam in reacting system was analyzed in given paper. Computer simulations were used as test method applied in presented work. Calculations were carried by using Computational Fluid Dynamics (CDF) method and Ansys Fluent software. Changes in outlet concentrations of syngas components (CO, CO2, CH4, H2O, H2), in relation with time of process, were presented. Composition of product gas, its heating value and temperature of process were also examined (on outlet of rector) in function of content of steam in gasification agent (which was mixture of O2 and H2O). Obtained results indicated a possibility of conduct of stable gasification process (with predictable characteristic of gas). The simulation also demonstrated a possibility of deterioration of conditions in real reactors as a results of applying of too high amounts of steam.
Rocznik
Strony
2--11
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • Interdisciplinary PhD Studies in Field of Clean Coal Technologies, Central Mining Institute, Katowice, Poland
autor
  • Department of Post-Industrial Sites and Waste Management, Central Mining Institute, Katowice, Poland
Bibliografia
  • 1.ANSYS. (2009). FLUENT 12.0 theory guide. ANSYS, Inc.
  • 2.Bhutto, A., Bazmi, A., & Zahedi, G. (2013). Underground coal gasification: from fundamentals to applications. Progress in Energy and Combustion Science, 39(1), 189e214. http://dx.doi.org/10.1016/j.pecs. 2012.09.004.
  • 3.Białecka, B. (2008). Podziemne zgazowanie węgla: podstawy procesu decyzyjnego [Underground coal gasification e basics of the decisionmaking process]. Katowice: Główny Instytut Górnictwa.
  • 4.Higman, C., & Van der Burgt, M. (2008). Gasification (2nd ed.). Elsevier.
  • 5.Janoszek, T., Sygała, A., & Bukowska, M. (2013). CFD simulations ot temperature variation in carboniferous rock strata during UCG. Journal of Sustainable Mining, 12(4), 34e44. http://dx.doi.org/10.7424/jsm130406.
  • 6.Jaworski, Z. (2005). Numeryczna mechanika płynów w inżynierii chemicznej i procesowej [Computational fluid dynamics in chemical and process engineering]. Warszawa: Akademicka eOficyna Wydawnicza EXIT.
  • 7.Jones, W. P., & Whitelaw, J. H. (1982). Calculating methods for reacting turbulent flows: a review. Combustion and Flame, 48(1),1e26. http://dx.doi.org/10.1016/0010-2180(82)90112-2.
  • 8.Khadse, A., Qayyumi, M., Mahajani, S., & Aghalayam, P. (2007). Underground coal gasification: a new clean coal utilization technique for India. Energy, 32(11), 2061e2071. http://dx.doi.org/10.1016/j.energy.2007.04.012.
  • 9.Kuo, K. K. Y. (1986). Principles of combustion. New York: John Willey and Sons.
  • 10.Launder, B., & Spalding, D. (1972). Mathematical models of turbulence. Academic Press.
  • 11.Li, H. K., & Toor, H. L. (1986). Chemical indicators as mixing probes. A possible way to measure micromixing simply.
  • 12.Industrial & Engineering Chemistry Fundamentals, 25(4), 719e723. http://dx.doi.org/10.1021/i100024a040.
  • 13.Lou, Y., Coertzen, M., & Dumble, S. (2009). Comparison of UCG cavity growth with CDF model predictions. In Seve th International Conference on CFD in the minerals and process industries, CSIRO, Melbourne, 9e11.12.2009.
  • 14.Perkins, G. (2005). Mathematical modelling of underground coal gasification (Ph.D. thesis). Sydney, Australia: The University of New South Wales.
  • 15.Perkins, G., Saghafi, A., & Sahajwalla, V. (2003). Numerical modeling of underground coal gasification and its application to Australian coal seam conditions. Sydney, Australia: School of Material Science and Engineering, University of New South Wales.
  • 16.Perkins, G., & Sahajwalla, V. (2007). Modelling of heat and mass transport phenomena and chemical reaction in underground coal gasification. Chemical Engineering Research and Design, 85(3), 329e343. http://dx.doi.org/10.1205/cherd06022.
  • 15.Petela, R. (1969). Technologia paliw: odgazowanie, zgazowanie, spalanie dla kierunk ow energetycznych [Fuels technology: devolatilization, gasification, combustion for energetic studies]. Gliwice: Wyd. Pol. Sl.
  • 16.Sivathanu, Y. R., & Faeth, G. M. (1990). Generalized state relationship for scalar properties in Npn-premixed hydrocarbon/air flames. Combustion and Flame, 82(11), 211e230. http://dx.doi.org/10.1016/0010-2180(90)90099-D.
  • 17.Stańczyk, K., Howaniec, N., Smoliński, A., Świądrowski, J., Kapusta, K., Wiatowski, M., et al. (2011). Gasification of lignite and hard coal with air and oxygen enriched air in a pilot scale ex situ reactor for underground coal gasification.
  • 18.Fuel, 90(5), 1953e1962. http://dx.doi.org/10.1016/j.fuel.2010. 12.007.
  • 19.Wang, Z., Huang, W., Zhang, P., & Xin, L. (2011). A contrast study on different gasifying agents of underground coal gasification at Huating Coal Mine. Journal of Coal Science and Engineering, 17(2), 181e186. http://dx.doi.org/10.1007/s12404-011-0214-1.
  • 20.Yang, L. (2004a). Non-linear coupling mathematical model of Yang, L. (2004b). Study on the model experiment and numerical simulation for underground coal gasification. Fuel, 83(4e5), 573e584. http://dx.doi.org/10.1016/j.fuel.2003.08.011.
  • 21.Yang, L. (2005). Numerical study on the underground coal gasification for inclined seams. American Institute of Chemical Engineers Journal, 51(11), 3059e3071. http://dx.doi.org/10.1002/aic.10554.
  • 22.Żogała, A. (2014). Equilibrium simulations of coal gasification e factors affecting syngas composition. Journal of Sustainable Mining, 13(2), 30e38. http://dx.doi.org/10.7424/jsm140205.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-330d0bdd-7c14-4a34-9b14-b4e2fb9892db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.