PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

OPTIMEX: Measurement of Detonation Front Curvature with a Passive Fiber Optical System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The ability of a newly developed independent passive optical system OPTIMEX to measure the detonation front curvature is demonstrated on charges of pressed explosive A-IX-1 (RDX/ceresin-stearin mixture with 95/5 wt.%). The charges, with length to diameter ratios of from one to four, were prepared from cylinders with diameters of 21 mm, 30 mm, 40 mm and 50 mm pressed to a density of 1.66 g/cm3. Such charges detonate with a velocity of 8220 m/s. The detonation curvature was obtained using 8 optical fibers and the results were compared with photographs acquired by an ultra-high speed framing camera UHSi 12/24.
Rocznik
Strony
807--820
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
  • Institute of Energetic Materials, University of Pardubice, Czech Republic
autor
  • Institute of Energetic Materials, University of Pardubice, Czech Republic
  • OZM Research, Bliznovice 32, Czech Republic
autor
  • Institute of Energetic Materials, University of Pardubice, Czech Republic
  • Institute of Energetic Materials, University of Pardubice, Czech Republic
  • Department of Radioelectronics (DREL), Faculty of Electrical Engineering and Communication, Brno University of Technology, Czech Republic
  • Department of Radioelectronics (DREL), Faculty of Electrical Engineering and Communication, Brno University of Technology, Czech Republic
autor
  • Department of Radioelectronics (DREL), Faculty of Electrical Engineering and Communication, Brno University of Technology, Czech Republic
autor
  • Department of Radioelectronics (DREL), Faculty of Electrical Engineering and Communication, Brno University of Technology, Czech Republic
Bibliografia
  • [1] Bdzil J.B., Fickett W., Stewart D.S., Detonation Shock Dynamics: A New Approach to Modeling Multidimensional Detonation Waves, 9th Symposium (Int.) on Detonation, Portland, OR, 1989, 730-42.
  • [2] Stewart S., Lectures on Detonation Physics: Introduction to the Theory of Detonation Shock Dynamics, Interim Report WL-TR-94-7089, Wright Laboratory, Armament Directorate, Eglin Airforce Base, 1993.
  • [3] Hill L.G., Bdzil J.B., Aslam T.D., Front Curvature Rate Stick Measurements and Detonation Shock Dynamics Calibration for PBX 9502 Over a Wide Temperature Range, 11th Symposium (Int.) on Detonation, 1998, 1029-1037.
  • [4] Sharpe G.J., Braithwaite M., Steady Non-ideal Detonations in Cylindrical Sticks of Explosives, J. Eng. Math., 2005, 53, 39-58.
  • [5] Bdzil J.B., Engelke R., Christenson D.A., Kinetics Study of a Condensed Detonating Explosive, J. Chem. Phys., 1981, 74(10), 5694.
  • [6] Souers P.C., Kinetic Information from Detonation Front Curvature, 11th Symposium (Int.) on Detonation, Snowmass, CO, USA, Aug 31 - Sept 4, 1998, 459.
  • [7] Forbes J.W., Lemar E.R., Sutherland G.T., Baker R.N., Detonation Wave Curvature, Corner Turning, and Unreacted Hugoniot of PBXN-111, Report ADA263898, Naval Surface Warfare Center Dahlgren Div VA, 1992.
  • [8] Souers P.C., A Library of Prompt Detonation Reaction Zone Data, Lavrence Livermare National Laboratory, Report UCRL-ID-130055, Rev 1, 1998.
  • [9] Souers P.C., Size Effect and Detonation Front Curvature, Propellants Explos. Pyrotech., 1997, 22, 221-225.
  • [10] Jackson S.I., Kiyanda Ch.B., Short M., Precursor Detonation Wave Development in ANFO Due to Aluminum Confinement, 14th Symposium (Int.) on Detonation, Office of Naval Research, 2010, 740-749.
  • [11] Catanach R.A., Hill L.G., Diameter Effect Curve and Detonation Front Curvature Measurements for ANFO, AIP Conf. Proc. Shock Compression of Condensed Matter, 24-29 June 2001, Atlanta, Georgia (USA), 2002, 620, 906.
  • [12] Sheffield S.A., Engelke R., Condensed-phase Explosives: Shock Initiation and Detonation Phenomena, in: Shock Wave Science and Technology Reference Library, (Yasuyuki Horie, Ed.), Vol. 3: Solids II, Springer, Berlin Heidelberg, 2009, pp 1-64; ISBN 978-3-540-77078-7.
  • [13] Trzciński W.A., Cudziło S., Szymańczyk L., Studies of Detonation Characteristics of Aluminum Enriched RDX Compositions, Propellants Explos. Pyrotech., 2007, 32(5), 392-400.
  • [14] Trzciński W.A., Barcz K., Investigation of Blast Wave Characteristics for Layered Thermobaric Charges, Shock Waves, 2012, 22, 119-127.
  • [15] Dorsett H., Cliff M.D., Detonation Front Curvature Measurements and Aquarium Tests of Tritonal Variants, DSTO-TR-1411, Defence Science and Technology Organisation, Australia, 2003.
  • [16] Minshall S., Properties of Elastic and Plastic Waves Determined by Pin Contactors and Crystals, J. Appl. Phys., 1955, 26, 463.
  • [17] Krupka M., Moravec J., Pachmáň J., Šelešovský J., Maršálek R., Šebesta V., Prokeš A., Method of Measuring and Evaluating Characteristic of Explosiongenerated Sequential Optical Signals (in Czech), Patent CZ 305407, 2015.
  • [18] Cooper P.W., Explosives Engineering, Wiley-VCH, 1996, p. 294-297; ISBN 0-471-18636-8.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ebdb10e-3dc3-4c36-a715-b637c93d4334
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.