PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of manganese content on the microstructure and properties of AlSi10MnMg(Fe) alloy for die castings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This paper was to determine the effect of different manganese addition contents from 0.2 to 1.0 wt.% on the microstructure, HB hardness and selected mechanical properties (UTS; YS; EL) of AlSi10MnMg alloy with increased iron content (about 1.0 wt.%). The proportion of iron in the studied alloy is so high because approx. 50% of the charge came from secondary materials. Design/methodology/approach: Chemical composition tests were performed using a Foundry Master Compact 8 emission spectrometer. Static tensile testing at ambient temperature was carried out according to PN-EN ISO 6892-1 on an Instron 3382 using a 20:1 ratio and a constant tensile speed of 5 mm/min-1. Tensile strength (UTS), conventional yield strength (YS), and per cent elongation after rupture of a proportional sample (EL) were determined from this test. Brinell hardness measurement was performed on a Zwick ZHF1, with a loading force of 250 N, with a 5 mm diameter ball for 35 s. Ten measurements were taken, discarding the two outliers, and the arithmetic mean was calculated from the remaining measurements. Metallographic studies were conducted on a MeF-2 Reichert light microscope. X-ray microanalysis studies were carried out on a Hitachi S-3400 scanning microscope coupled to an EDS Voyager X-ray spectrometer equipped with an SE secondary and BSE backscattered electron detector. Chemical composition analysis was performed by energy dispersive X-ray microanalysis (EDS) using a Thermo Noran detector. Findings: Increased iron content in aluminium-silicon alloys is a major concern. It causes a significant reduction in the mechanical properties of the materials. This is due, among other things, to the increasing scarcity of primary materials (high cost and environmentally unjustifiable) versus the increasing share of recycled materials. Based on the study, AlSi10MnMg(Fe) alloys obtained under pressure with higher iron content (about 1% wt.), the optimal value of manganese addition is about 0.58% wt. Practical implications: This research has shown that it is possible to use recycled Al-Si materials. The article presents one way to reduce the negative impact of iron addition to aluminium alloys as a result of reusing this type of material. Originality/value: The article presents the effect of manganese addition on the selected aluminium alloy. It was determined that the addition of manganese in the amount of 0.58% wt. causes a significant reduction in the negative effect of iron phases. The article is intended not only for the academic community but also for specialists in the foundry industry.
Rocznik
Strony
5--12
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
  • Faculty of Material Engineering, Silesian University of Technology, ul Krasińskiego 8, 40-019 Katowice, Poland
autor
  • Magna Casting Poland, sp. z o.o., ul. Szkolna 15, 47-225 Kędzierzyn-Koźle, Poland
autor
  • Faculty of Transport and Aviation Engineering, Silesian University of Technology, ul Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
  • 1. Rhienfellden Alloys, Alloys for Pressure Die Casting. Available from: https://rheinfelden-alloys.eu/wp-content/uploads/2017/01/Handbook-Die-Casting-Aluminium-Alloys_RHEINFELDEN-ALLOYS_2016_EN.pdf
  • 2. J.R. Davis (ed), Alloying: Understanding the basics, ASM International, Materials Park, 2001.
  • 3. S.D. MacKenzie, G.E. Totten (eds), Analytical characterization of aluminum, steel, and superalloys, Taylor and Francis Group, Boca Raton, 2006.
  • 4. D. Bösch, S. Pogatscher, M. Hummel, W. Fragner, P.J. Uggowitzer, M. Göken, H.W. Höppel, Secondary Al-Si-Mg high-pressure die casting alloys with enhanced ductility. Metallurgical and Materials Transactions A 46 (2015) 1035-1045. DOI: https://doi.org/10.1007/s11661-014-2700-8
  • 5. Ł. Rudolf, M.T. Roszak, Tools of product quality planning in the production part approval process, Archives of Materials Science and Engineering 118/2 (2022) 67-74. DOI: https://doi.org/10.5604/01.3001.0016.2591
  • 6. A.M. Samuel, F.H. Samuel, Effect of alloying elements and dendrite arm spacing on the microstructure and hardness of an Al-Si-Cu-Mg-Fe-Mn (380) aluminium die-casting alloy, Journal of Materials Science 30 (1995) 1698-1708. DOI: https://doi.org/10.1007/BF00351598
  • 7. D. Zavadska, E. Tillova, I. Svesova, M. Chalupova, L. Kucharikova, J. Belan, The effect of iron content on microstructure and porosity of secondary AlSi7Mg0.3 alloy, Periodica Polytechnica Transportation Engineering 47/4 (2019) 283-289. DOI: https://doi.org/10.3311/PPtr.12101
  • 8. L. Hurtalová, E. Tillová, M. Chalupová, E. Ďuriníková, Effect of chemical composition of secondary Al-Si cast alloy on intermetallic phases, Scientific Proceedings IX International Congress “Machines, Technolоgies, Materials”, vol. 3, 2012, 23-26.
  • 9. L. Hurtalowă, E. Tillovă, M. Chalupowă, The structure analysis of secondary (recycled) AlSi9Cu3 cast alloy with and without heat treatment, Engineering Transaction 61/3 (2013) 197-218.
  • 10. P. Mikołajczyk, L. Ratke, Three dimensional morphology of -Al5FeSi intermetallics in AlSi alloys, Archives of Foundry Engineering 15/1 (2015) 47-50. DOI: https://doi.org/10.1515/afe-2015-0010
  • 11. F. Sanna, A. Fabrizi, S. Ferraro, G. Timelli, P. Ferro, F. Bonollo, Miltiscale characterisations of AlSi9Cu3(Fe) die casting alloys after Cu, Mg, Zr and Sr addition, Metalurgia Italiana 4 (2013) 13-24.
  • 12. X. Cao, J. Campbell, Morphology of -Al5FeSi phase in Al-Si cast alloys, Materials Transaction 47/5 (2006) 1303-1312. DOI: https://doi.org/10.2320/matertrans.47.1303
  • 13. M. Mahta, M. Emamy, X. Cao, J. Campbell, Overview of -Al5FeSi phase in Al-Si cast alloys, in: L.V. Olivante (ed), Materials Science Research Trends, Nova Science Publishers, Hauppauge, 2008, 1-16.
  • 14. Ł. Chałada, M. Adamiak, A. Woźniak, Evaluation of anti-adhesive coatings on the surface of injection moulds made of Al alloys, Archives of Materials Science and Engineering 97/1-2 (2019) 5-11. DOI: https://doi.org/10.5604/01.3001.0013.2865
  • 15. G. Mrówka-Nowotnik, The role of phase components in shaping the microstructure and mechanical properties of aluminum alloys of group 6xxx, Publishing House of the Rzeszów University of Technology, Rzeszów, 2012 (in Polsh).
  • 16. R. Baldan, J. Malavazi, A. Cauto, Microstructure and mechanical behavior of Al9Si0.8Fe alloy with different Mn contents, Materials Science and Technology 33/10 (2017) 1192-1199. DOI: https://doi.org/10.1080/02670836.2016.1271966
  • 17. S.G. Shabestari, The Effect of iron and manganese on the formation of intermetallic compounds in Al-Si alloys, Materials Science and Engineering A 383/2 (2004) 289-298. DOI: https://doi.org/10.1016/j.msea.2004.06.022
  • 18. S.G. Shabestari, M. Mahmudi, M. Emamy, J. Campbell, Effect of Mn and Sr on intermetallics in Fe-rich eutectic Al-Si alloy, International Journal Cast Metals Research 15/1 (2002) 17-24. DOI: https://doi.org/10.1080/13640461.2002.11819459
  • 19. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Recent development in aluminum alloys for the automotive industry, Materials Science and Engineering A 280/1 (2000) 37-49. DOI: https://doi.org/10.1016/S0921-5093(99)00653-X
  • 20. J.A. Taylor, Iron-containing intermetallic phases in Al-Si based casting alloys, Procedia Materials Science 1 (2012) 19-33. DOI: https://doi.org/10.1016/j.mspro.2012.06.004
  • 21. S. Ferraro, A. Fabrizi, G. Timelli, Evolution of sludge particles in secondary die-cast aluminium alloys as function of Fe, Mn and Cr contents, Materials Chemistry and Physics 153 (2015) 168-179. DOI: https://doi.org/10.1016/j.matchemphys.2014.12.050
  • 22. S. Seifedine, I.L. Svensson, The influence of Fe and Mn content and cooling rate on the microstructure and mechanical properties of A380-die casting alloys, Metallurgical Science and Technology 27/1 (2009) 11-20.
  • 23. L. Zhang, J. Gao, L.N.W. Damoah, D.G. Robertson Removal of Iron From Aluminum: A Review, Mineral Processing and Extractive Metallurgy Review 33/2 (2012) 99-157. DOI: https://doi.org/10.1080/08827508.2010.542211
  • 24. M. Tupaj, A.W. Orłowicz, M. Mróz, A. Trytek, Materials Properties of Iron-rich Intermetallic Phase in a Multicomponent Aluminium-Silicon Alloy, Archives of Foundry Engineering 15/1S (2015) 111-114.
  • 25. W. Khalifa, A.M. Samuel, F.H. Samuel, H.W. Doty, S. Valtierra, Metallographic observations of β-AlFeSi phase and its role in porosity formation in Al–7%Si alloys, International Journal of Cast Metals Research 19/3 (2006) 156-166. DOI: https://doi.org/10.1179/136404606225023372
  • 26. P. Puspitasari, R. Fauzan, T.L. Finta, M. Mustapha, D. Puspitasari, Morphology of aluminium with nickel addition on san casting process, Journal of Achievements in Materials and Manufacturing Engineering 87/1 (2018) 13-17. DOI: https://doi.org/10.5604/01.3001.0012.0734
  • 27. T.B. Korkut, E. Armakan, O. Ozaydin, K. Ozdemir, A. Goren, Design and comparative strength analysis of wheel rims of a lightweight electric vehicle using Al6063 T6 and Al5083 aluminium alloys, Journal of Achievements in Materials and Manufacturing Engineering 99/2 (2020) 57-63. DOI: https://doi.org/10.5604/01.3001.0014.1776
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aeaeeead-1651-4ce3-91fd-86138e6da669
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.