PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of additives on the insulation properties of the epoxy resin building substance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Investigation of the possibility of converting a material from outside the scope of thermal insulation (building thermal insulator) to entire it. Design/methodology/approach: Epoxy resin was used for this purpose, and this was done in two ways. First, the composite thermal insulators were prepared using the weight percent method, where the following additive materials were added to the epoxy (sunflower seed husks, used utensil waste, titanium dioxide powder). The other method, the above-manufactured materials, was used to prepare the composite thermal insulators using the volume ratio method, where the base layer was always epoxy, while the other two layers were among the other materials. The suitability and applicability of the insulator were assessed through the evaluation of its thermal conductivity, specific heat capacity, and hardness tests. All tests were performed under standardized conditions. Findings: Significant findings were achieved in this study where the thermal conductivity of the epoxy (0.24 to 0.08 W/m.°C) after adding sunflower seed husks based on the weight percent method. Furthermore, when mixing epoxy with utensil waste materials, the specific heat capacity was lowered to 0.31 kJ/kg.K. It is important to note that all of these outcomes are within the methods’ defined insulating range. Adding titanium dioxide, and TiO2 powder was improved the surface hardness of epoxy, where the highest hardness value was obtained after adding this material compared to other additives. Research limitations/implications: Sustainability and reducing energy consumption are among the most important aspects addressed in this research. Originality/value: This research aims to study the impact of various additives, namely, Sunflower Seed husks, used utensil waste, and titanium dioxide powder for epoxy resin for obtaining a new material that serves as an efficient insulator inside buildings.
Rocznik
Strony
49--57
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
  • Basrah Engineering Technical College, Southern Technical University, Basrah, Iraq
autor
  • Mechanical Engineering Department, Engineering College, University of Basrah, Basrah, Iraq
autor
  • Materials Engineering Department, Engineering College, University of Basrah, Basrah, Iraq
Bibliografia
  • [1] P. Nema, S. Nema, P. Roy, An overview of global climate changing in current scenario and mitigation action, Renewable and Sustainable Energy Reviews 16/4 (2012) 2329-2336. DOI: https://doi.org/10.1016/j.rser.2012.01.044
  • [2] L. Parker, We Depend on Plastic. Now We’re Drowning in It, 2018. Available from: https://www.nationalgeographic.com/magazine/article/ plastic-planet-waste-pollution-trash-crisis
  • [3] H.W. Koh, D.K. Le, G.N. Ng, X. Zhang, N. Phan- Thien, U. Kureemun, H.M. Duong, Advanced Recycled Polyethylene Terephthalate Aerogels from Plastic Waste for Acoustic and Thermal Insulation Applications, Gels 4/2 (2018) 43. DOI: https://doi.org/10.3390/gels4020043
  • [4] O. Kaynakli, Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls, Energies 4/6 (2011) 913-927. DOI: https://doi.org/10.3390/en4060913
  • [5] L.S. Paraschiv, S. Paraschiv, I.V. Ion, Increasing the energy efficiency of buildings by thermal insulation, Energy Procedia 128 (2017) 393-399. DOI: https://doi.org/10.1016/j.egypro.2017.09.044
  • [6] E. Dieckmann, B. Nagy, K. Yiakoumetti, L. Sheldrick, C. Cheeseman, Thermal insulation packaging for cold-chain deliveries made from feathers, Food Packaging and Shelf Life 21 (2019) 100360. DOI: https://doi.org/10.1016/j.fpsl.2019.100360
  • [7] K. Manohar, A.A. Adeyanju, A Comparison of Banana Fiber Thermal Insulation with Conventional Building Thermal Insulation, Current Journal of Applied Science and Technology 17/3 (2016) 1-9. DOI: https://doi.org/10.9734/BJAST/2016/29070
  • [8] S. Panyakaew, S. Fotios, 321: Agricultural Waste Materials as Thermal Insulation for Dwellings in Thailand: Preliminary Results, Proceedings of the 25th Conference on Passive and Low Energy Architecture “PLEA 2008”, Dublin, 2008.
  • [9] C. May, Epoxy Resins: Chemistry and Technology, 2nd Edition, Routledge, New York, 1988. DOI: https://doi.org/10.1201/9780203756713
  • [10] H. Sukanto, W.W. Raharjo, D. Ariawan, J. Triyono, M. Kaavesina, Epoxy resins thermosetting for mechanical, Open Engineering 11 (2021) 797-814. DOI: https://doi.org/10.1515/eng-2021-0078
  • [11] A.J. Haider, Z.N. Jameel, I.H.M. Al-Hussaini, Review on: Titanium Dioxide Applications, Energy Procedia 157 (2019) 17-29. DOI: https://doi.org/10.1016/j.egypro.2018.11.159
  • [12] P. Cancalon, Chemical composition of sunflower seed hulls, Journal of the American Oil Chemists' Society 48/10 (1971) 629-632. DOI: https://doi.org/10.1007/BF02544577
  • [13] J. Maul, B.G. Frushour, J.R. Kontoff, H. Eichenauer, K.-H. Ott, C. Schade, Polystyrene and Styrene Copolymers, in: Ullmann's Encyclopedia of Industrial Chemistry, Wiley, Hoboken, New Jersey, 2007. DOI: https://doi.org/10.1002/14356007.a21_615
  • [14] M. Alam, S. Rahman, P.K. Halder, A. Raquib, M. Hasan, Lee’s and Charlton’s method for investigation of thermal conductivity of insulating materials, IOSR Journal of Mechanical and Civil Engineering 3/1 (2012) 53-60. DOI: https://doi.org/10.9790/1684-0315360
  • [15] ASTM E384-17, Standard Test Method for Microindentation Hardness of Materials, ASTM International, West Conshohocken, PA, 2017. DOI: https://doi.org/10.1520/E0384-17
  • [16] I.A. Mashkoor, H.M. Mohammad, S.F. Dakhil, Preparation of sustainable thermal insulators from waste materials, IOP Conference Series: Materials Science and Engineering 987/1 (2020) 012008. DOI: https://doi.org/10.1088/1757-899X/987/1/012008
  • [17] F. Ali, N. Ali, M. Altaf, A. Said, S.S. Shah, M. Bilal, Epoxy Polyamide Composites Reinforced with Silica Nanorods: Fabrication, Thermal and Morphological Investigations, Journal of Inorganic and Organometallic Polymers and Materials 30 (2020) 3869-3877. DOI: https://doi.org/10.1007/s10904-020- 01518-5
  • [18] D.D.L. Chung, Composite Materials Science and Applications, 2nd Edition, Springer, London, 2010. DOI: https://doi.org/10.1007/978-1-84882-831-5
  • [19] H. Lakrafli, S. Tahiri, A. Albizane, M. Bouhria, M.E. El Otmani, Experimental study of thermal conductivity of leather and carpentry wastes, Construction and Building Materials 48 (2013) 566-574. DOI: https://doi.org/10.1016/j.conbuildmat.2013.07.048
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e48c8b9f-2171-4cb5-8a2c-1ddcbc5e6e6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.