PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solving the Beach Wrack Problems by On-Site Treatment with Reed Beds Towards Fertilizer Amendments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Beach wrack is a unique issue. It is both an ecological problem for the eutrophicated reservoirs such as the Baltic Sea and the social one associated with nuisance for inhabitants and tourists visiting seaside resorts. This generates a problem for the institutions responsible for beach management (local authorities). Nowadays local authorities generally leave cleaning the beach to local companies and it is not known how the beach wrack material is utilized. According to the current trend, the nuisance of beach wrack should be turned into a resource that will bring benefits. In order to understand what beach wrack really is, it is necessary to establish a specific definition. The material washed out by the sea contains not only the natural substances of organic origin, but also human products: plastics, glass or metals, which in many cases forces to pre-select before using the technology. Good treatment of material the quantities of which are undefined and the occurrence is variable, constitutes a real challenge. The beach wrack processing on reed bed system, so far used mainly for the treatment of sewage sludge, seems to be a good idea. It is an innovative technology that is expected to have similar results as for the processing of sewage sludge from wastewater treatment, i.e. a high nutrient fertilizer. In accordance with European Union recommendations, the possible use of beach wrack as a fertilizer in agriculture or enrichment of compost, will close the circulation of organic matter in environment, thus entering the reed bed system into a circular economy. Many aspects related to the reed bed system favor the use of this technology in the practical processing of marine organic waste.
Słowa kluczowe
Rocznik
Strony
252--261
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • Department Water and Waste-Water Technology, Faculty of Civil And Environmental Engineering, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Department Water and Waste-Water Technology, Faculty of Civil And Environmental Engineering, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Department Water and Waste-Water Technology, Faculty of Civil And Environmental Engineering, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Government of south Australia, Coast Protection Board (2017). What is beach wrack?
  • 2. Coastline Factsheet, 38.
  • 3. Macreadie, P.I., Trevathan-Tackett, S.M., Baldock, J.A. and Kelleway, J.J. (2017). Converting beachcast seagrass wrack into biochar: A climate-friendly solution to a coastal problem. Science of the Total Environment, 574: 90–94.
  • 4. Wrack, http://www.beachapedia.org/Wrack
  • 5. Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC .
  • 6. Directive (EU) 2018/850 of the European Parliament and of the Council of 30 May 2018 amending Directive 1999/31/EC on the landfill of waste .
  • 7. Ocena stanu środowiska polskich obszarów morskich bałtyku na podstawie danych monitoringowych z roku 2017 na tle dziesięciolecia 2007–2016 (The assessment of the state of the environment of Polish sea areas of the Baltic Sea on the basis of monitoring data from 2017 against the background of the decade 2007–2016), (2018), edited by: Krzymiński W., published by: Inspekcja Ochrony Środowiska.
  • 8. Kompendium Submariner: Ocena Innowacyjnych i Zrównoważonych Sposobów Wykorzystania Zasobów Morza Bałtyckiego (Compendium Submariner: Evaluation of Innovative and Sustainable Ways of Using the Baltic Sea Resources). (2013) edited by: Schultz-Zehden A., Matczak M., published by: Instytut Morski w Gdańsku, ISBN 978–83–62438–14–3.
  • 9. Wetlands Algae Biogas – A Southern Baltic Sea Eutrophication Counteract Project. (2012) edited by: Hansson A., Tjernström E., Gradin M., Finnis P., published by: Municipality of Trelleborg Editors, ISBN 978–91–87407–00–0.
  • 10. Nielsen S., Cooper D. J. (2011). Dewatering sludge originating in water treatment worksin reed bed systems, Water Science & Technology, 64.2: 362.
  • 11. Kołecka K., Rohde D., (2018). Systemy trzcinowe jako metoda odwadniania i stabilizacji osadów ściekowych dla małych i średnich oczyszczalni, Rynek Instalacyjny, 3: 102–105.
  • 12. Kołecka K., Gajewska M., Obarska-Pempkowiak H., Rohde D., (2016) Integrated dewatering and stabilization system as an environmentally friendly technology in sewage sludge management in Poland, Ecological Engineering, 98: 346–353.
  • 13. Kołecka K., (2019) Usuwanie zanieczyszczeń I stabilizacja osadów ściekowych w systemach trzcinowych., vol. 149, Wydawnictwo Polskiej Akademii Nauk, Warszawa.
  • 14. Kołecka K., Rohde D., (2018). Zalety i problemy związane z zagospodarowaniem osadów ściekowych metodą trzcinową. Rynek Instalacyjny, 5: 20–25.
  • 15. Kołecka K., Obarska-Pempkowiak H., Gajewska M., (2018). Oczyszczalnie hydrofitowe jako wdrożenie założeń idei gospodarki o obiegu zamkniętym, Rocznik Ochrona Środowiska, 20, 1350–1371.
  • 16. Sobczyk R., Sypuła M., (2011). Wykorzystanie makrofitów do przetwarzania osadów ściekowych na mursz, Forum Instalatora, 4: 46–48 .
  • 17. Obarska-Pempkowiak H., Kołecka K., Buchholtz K., Gajewska M., (2015). Ekoinżynieria w zintegrowanym odwadnianiu i stabilizacji osadów ściekowych w systemach trzcinowych, Przemysł Chemiczny, vol. 94, 12: 2299–2303.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-063fe558-5af6-4aa7-9b24-da81d056a877
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.