PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Economic Valuation and Effectiveness of Utilizing Electrocoagulation System in Reducing Chemical Oxygen Demand of Textile Industry Wastewater

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Industrial activities vary greatly. The textile industry processes produce solid and liquid waste. The liquid waste comes from the process of reviewing threads, removing lubricants from synthetic fibers before weaving, and from the dyeing process. The purpose of this research is to determine the economic valuation and effectiveness of utilizing an electrocoagulation system in reducing Chemical Oxygen Demand (COD) of the textile industry wastewater. This research is a kind of an experimental study involving the pretest and posttest without control design. The research strategy consisted in 9 volt voltage and 5A electric current density with a 3 cm electrode plate distance. The container used in electrocoagulation process was made of plastic with the dimensions of 48.5×27.5×31 cm. The sampling technique was grab sampling with 3 treatments and 6 repetitions. The sample size was 45 liters. The results of this research indicate that the electrocoagulation method can reduce the level of Chemical Oxygen Demand (COD) in the textile production wastewater. The COD level before treatment was 221.5 mg/l, after electrocoagulation with 8 electrode plates dropped to 23.0–41.0 mg/l (85.26% decrease). The economic effectiveness and efficiency of the use of electrocoagulation compared to using conventional method in reducing COD level is only Rp 47.59/liter, while the conventional method reaches Rp 117.089/liter.
Rocznik
Strony
35--43
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Department of Environmental Health, Bandung Health Polytechnic, 40514 Cimahi Utara, Indonesia
  • Doctorate Program of Environmental Studies, Diponegoro University, 50241 Semarang, Indonesia
  • Doctorate Program of Environmental Studies, Diponegoro University, 50241 Semarang, Indonesia
Bibliografia
  • 1. Barus, T. A. 2004. Introduction to limnology study of mainland water ecosystems. Medan: USU Press
  • 2. Benefield J.W., 1982. Process chemistry for water and wastewater treatment, Prentice Hall inc, New Jersey.
  • 3. Busyairi, M., 2014. Processing of Liquid Waste with Parameters of Total Suspended Solid (TSS) and Color Using Biokoagulant (Crab Shell Waste). National Symposium RAPI XIII, FT UMS ISSN 1412–9612.
  • 4. Fikri, E., Khalda, L.M., Pujiono. 2019. Difference of electrocoagulation contact time on sulfide decrease and color in waste water in Sipatex Putri Lesari Company, Bandung, West Java, Indonesia. Jr. of Industrial Pollution Control. 35(1), 2244–2250.
  • 5. Holt, P. K. 2012. A quantitative comparison between chemical dosing and electrocoagulation colloids and surfaces. A: Physicochem. Eng. Aspects, 21(1), 233–248.
  • 6. Koukkanen,M., 2013. Development of an eco-and material-efficient pellet production chain-a chemical studiy. Dissertation. University of Oulu, Oulu.
  • 7. Letterman, R. D., Amirtharajah, A., O’Melia, C. R. 1999. Coagulation and flocculation on water quality and treatment. A Handbook of community water supplies, editor : Letterman, R. D. and American Water Works Association, McGraw-Hill, New York.
  • 8. Monahan S.E., 1993. Fundamentals of environmental chemistry. Lewis Publishers. London.
  • 9. Nemerow,N.L., Dasgupta, A., 1991. Industrial and hazardous waste treatment. New York: Van Nostrand Reinhold.
  • 10. Ni’am, A.C., 2017. Variations in the amount of electrodes and large voltage in reducing COD content and TSS of textile liquid waste by electrocoagulation method. Jurnal Teknik Lingkungan. 3(1), 21–26.
  • 11. Notoatmodjo, S. 2010. Health research methodology. Jakarta: Rineka Cipta.
  • 12. Nuradi, R., Wiharyanto, O., Purwono. 2017. Use of anaerob electrolysis with variations of number of electrolysis and electrode plates in processing of banyumanic domestic waste waste for reduction of COD and TSS concentration. 6(1), 1–11.
  • 13. Setianingrum, N.P., 2016. Effect of electrode and electrocoagulation method on inter-electrode voltage and distance between remazol red Rb. Inovasi Teknik Kimia. 1(2), 93–97.
  • 14. Showell, M.S., (2006) Introduction to Detergents dalam Handbook of Detergents Part D: Formulation, editor : Uri Zoller, Taylor & Francis Group. Page 1–26.
  • 15. Sillak H., Erliza, N., Yanib, M., 2015. Implementation of clean production for handling water in the oil and gas industry. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan. 5(1), 25–32.
  • 16. Siregar,S., 2005. Waste water treatment plant. Kanisius, Yogyakarta.
  • 17. Soeparman., Suparmi. 2002. Fecal disposal and liquid waste. Jakarta: Penerbit Buku Kedokteran EGC.
  • 18. Wang, A., Liu, W., Cheng, S., 2009. Source of methane and methods to control its formation in single chamber microbial electrolusis cells. Int. J. Hydrogen Energy. 34, 3653–3658.
  • 19. Woytowich. 2010. Electrocoagulation (CURE) treatment of ship bilge water for the u. s. cost guard in Alaska. Marine Technology Society Journal. 27 (2), 62–68.
  • 20. Tchobanoglous, G. dan Burton, F.L., 1991. Wastewater engineering treatment disposal, reuse. series water resource and environmental engineering. Singapore: McGraw Hill Book.
  • 21. Triwulandari R., Pahlevi M.N., Mirwan A., 2012. Extraction of Total Cr6+ and Cr Metals from Electrocoagulation Electroplating Industry Waste. Konversi. 1(1), 46–54.
  • 22. Utami, T. S. ST, Beurabo, T.B.S., Kusuma, A.S. 2014. Test of effect of current strength, electrode distance, and electrode amount on electrocoagulation performance in reducing color and chemical oxygen demand backwash in ion exchange resin waste in PT. Refined Sugar Factory Product Angels. Jakarta: UI.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7acf57d4-1aab-4969-8982-675c9f83ac00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.