PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of Malaysian Wastewater Polishing Index: Case Study on a Moving Bed Biofilm Reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Currently, extra treatment of secondary effluent to remove nitrogen and phosphorous may be required for its unrestricted reuse. This can be achieved by installing the wastewater polishing systems (or tertiary treatment). The wastewater polishing solutions are environmentally friendly, cheap and effective. The experiments were conducted on a pilot scale using a Moving Bed Biofilm Reactor (MBBR) with a capacity of 500 L to polish the municipal effluent from organic pollutant, undesirable nutrients and bacteria without the use of disinfectants. The major purpose was to define and apply a model for evaluating polishing of secondary effluent and implement the optimal technology for unrestricted use. Wastewater Polishing Index (WWPI) is a new tool that has been employed for rapidly evaluating of water quality improvement. It can be implemented into any surface water effluent treatment system or for reuse. WWPI can be an important tool designed for decision makers. The total average weight of six parameters (COD, BOD5, SS, Ammonia nitrogen, Total Phosphorus and Escherichia coli) are defined as the index, each one converted to sub-index which is scaled from zero to one hundred. If none of six parameters exist in the effluent WWPI, it is equal to zero, while if the parameters match the Malaysian’s effluent Standard B, It amounts to one hundred. In turn, WWPI is ninety when all six of them are equal to their corresponding Malaysian National Water Quality Standard (IV) for re-use. The index of wastewater polishing was validated and approved for the pilot MBBR study.
Rocznik
Strony
1--8
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Department of Civil and Structure Engineering, Faculty of Engineering and Built Environment, universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
autor
  • Department of Civil and Structure Engineering, Faculty of Engineering and Built Environment, universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Department of Civil and Structure Engineering, Faculty of Engineering and Built Environment, universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Bibliografia
  • 1. Abu Bakar, S.N.H., Abu Hasan, H., Mohammad, A.W., Sheikh Abdullah, S.R., Haan, T.Y., Ngteni, R. and Yusof, K.M.M. 2018. A review of moving-bed biofilm reactor technology for palm oil mill effluent treatment. Journal of Cleaner Production, 171, 1532–1545.
  • 2. Al-Baldawi, I.A.W., Abdullah, S.R.S., Suja, F., Anuar, N. and Mushrifah, I. 2013. Comparative performance of free surface and sub-surface flow systems in the phytoremediation of hydrocarbons using Scirpus grossus. Journal of Environmental Management, 130, 324–330.
  • 3. APHA/ AWWA/ WPCF. 2005. Standard Methods for Examination of Water and Wastewater. American Water Works Association/American Public Works Association/Water Environment Federation, Washington DC, USA.
  • 4. Asano, T. 1998. Wastewater reclamation and reuse. Lancaster: Technomic.
  • 5. Bhavin N.M. 2012. Development of Wastewater Quality Index for Disposal in to Environmental Sink – “Inland Surface Waters”. International Journal of Computer Applications (IJCA). http://research.ijcaonline.org/efitra/number3/efitra1017.pdf. Accessed on 27 February 2018.
  • 6. Bick, A., Plazas, J.G., Yang, F., Hagin J. and Oron, G. 2009. Immersed Membrane BioReactor (IMBR) for treatment of combined domestic and dairy wastewater in an isolated farm: An exploratory case study implementing the Facet Analysis (FA). Desalination, 249, 1217–1222.
  • 7. Department of Environment (DOE), Ministry of Natural Resources and the Environment 201. http://www.wepa-db.net/policies/law/malaysia/eq_surface.htm. Assessed on 27 February 2018.
  • 8. Drioli, E., Stankiewicz, A.I. and Macedonio, F. 2011. Membrane engineering in process intensification – An overview. Journal of Membrane Science, 380, 1–8.
  • 9. Environmental Quality (Sewage and Industrial Effluents) Regulations, 2013. Department of Environment Malaysia, Malaysia.
  • 10. Environmental Quality (Sewage and Industrial Effluents) Regulations 2009. Department of Environment Malaysia. https://www.doe.gov.my/portalv1/wp-content/uploads/2015/01/Environmental_Quality_Industrial_Effluent_Regulations_2009__P.U.A_434–2009.pdf.
  • 11. Hanafiah, Z.M., Wan Mohtar, W.H.M., Abu Hasan, H., Jensen, H.S., Klaus, A. and Wan Mohtar, A.A.Q.I. 2019. Performance of wild-Serbian Ganoderma lucidum mycelium in treating synthetic sewage loading using batch bioreactor. Scientific Reports 9, 16109.
  • 12. Jasem, Y.I., Jumaha, G.F. and Ghawi, A.H. 2018. Treatment of medical wastewater by moving bed bioreactor system. Journal of Ecological Engineering 19(3), 135–140.
  • 13. Kawan, J. A., Abu Hasan, H., Suja, F., Jaafar, O., and Abd-Rahman, R. 2016. A review on sewage treatment and polishing using moving bed bioreactor (Mbbr). Journal of Engineering Science and. Technology, 11(8), 1098–1120.
  • 14. Lariyah, M.S., Mohiyaden, H.A., Hayder, G., Hussein, A., Basri, H., Sabri, A.F., and Noh, M.N. 2016. Application of moving bed biofilm reactor (MBBR) and integrated fixed activated sludge (IFAS) for biological river water purification system: a short review. IOP Conference Series: Earth Environ Sci 32, 012005. http://iopscience.iop.org/article/10.1088/1755–1315/32/1/012005/pdf
  • 15. Lin, W. 2018. Application of Ozone MBBR Process in Refinery Wastewater Treatment. IOP Conference Series: Earth and Environmental Science, 108, 042124. http://iopscience.iop.org/article/10.1088/1755–1315/108/4/042124/pdf.
  • 16. Md. Yusoff, M.F., Abdullah, S.R.S., Abu Hasan, H., Janor, H. and Ahmad, H. 2019. Performance of continuous pilot subsurface constructed wetland using Scirpus grossus for removal of COD, colour and suspended solid in recycled pulp and paper effluent. Environmental Technology & Innovation, 13, 346–352.
  • 17. Metcalf and Eddy 1991. Wastewater engineering treatments, disposal and reuse (3rd ed.). Singapore: McGraw-Hill.
  • 18. Morales-Garcia, D., Stewart, K. A., Seguin, P., and Madramootoo, C. 2011. Supplemental saline drip irrigation applied at different growth stages of two bell pepper cultivars grown with or without mulch in non-saline soil. Agricultural. Water Management, 98, 893–898.
  • 19. Oron, G., Gillerman, L., Bick, A., Manor, Y., Buriakovsky, N., and Hagin, J. 2008. Membrane technology for sustainable treated wastewater reuse: Agricultural; environmental and hydrological considerations. Water Science and Technology, 57, 1383–1388.
  • 20. Palese, A.M., Pasquale, V., Celano, G., Figliuolo, G., Masi, S., and Xiloyannis, C. 2009. Irrigation of olive groves in Southern Italy with treated municipal wastewater: Effects on microbiological quality of soil and fruits. Agriculture, Ecosystems and Environment, 129, 43–51.
  • 21. Piechna, P. and Żubrowska-Sudoł, M. 2017. Respirometric activity of activated sludge and biofilm in ifas-mbbr system. Journal of Ecological Engineering 18(4), 145–151.
  • 22. Salgot, M., Huertas, E., Weber, S., Dott, W., and Hollender, J. 2006. Wastewater reuse and risk: Definition of key objectives. Desalination, 187(1– 3), 29–40.
  • 23. Tang, K., Ooi, G. T. H., Litty, K., Sundmark, K., Kaarsholm, K. M. S., Sund, C., and Andersen, H. R. 2017. Removal of pharmaceuticals in conventionally treated wastewater by a polishing moving bed biofilm reactor (MBBR) with intermittent feeding. Bioresource Technology, 236, 77–86.
  • 24. Ustun, G.E., Kutlu, S., Solmaz, A., Ciner, F., and Baskaya, H.S. 2011. Tertiary treatment of a secondary effluent by the coupling of coagulation-flocculation-disinfection for irrigation. Desalination, 277, 207–212.
  • 25. Verlicchi, P., Masotti, L., and Galletti, A. 2011. Wastewater polishing index: A tool for a rapid quality assessment of reclaimed wastewater. Environmental Monitoring and Assessment, 173(1–4), 267–277.
  • 26. Vymazal, J. 2005. Removal of enteric bacteria in constructed treatment wetlands with emergent macrophytes: A review. Journal of Environmental Science and Health Part A-Toxic/Hazard. Subs. & Environ. Eng., 40(6–7), 1355–1367.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09207021-af9e-4d4b-9c29-9815ca61ead9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.