Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Protein tyrosine phosphatases - factors of bacterial virulence : as a therapeutic target in response to increasing antibiotic resistance
Języki publikacji
Abstrakty
Microbial virulence is the ability of pathogen to penetrate, replicate, multiplícate and, as a consequence, damage the cells of the infected organism. In recent years, rapid progress in bacterial genome sequencing has led to the discovery and characterization of many new virulence factors. One of the many mechanisms of bacterial virulence is the activity of bacterial kinases and phosphatases. These enzymes phosphorylate and dephosphorylate various amino acid residues in proteins, most commonly serine, tyrosine and threonine. Reversible phosphorylation and dephosphorylation can control the activity of target proteins, either directly, by inducing conformational changes in proteins, or indirectly, by regulating protein-protein interactions. Due to the increasing antibiotic resistance, new substances that could be used to treat diseases caused by resistant bacterial strains are sought. One of the possibilities seems to be the inhibition of bacterial tyrosine phosphatases. Phosphorylation of proteins containing tyrosine residues is a key post-translational modification that controls the numerous cellular functions in bacteria. So far, many tyrosine phosphatases have been found to be responsible for the virulence of various bacterial strains. Many bacterial species use protein tyrosine phosphatases activity in host-pathogen interaction, by affecting signalling pathways and subsequent induction of the infection process. Many studies are devoted to the search for tyrosine phosphatases inhibitors in the context of possible support of the current antibacterial treatment. This article presents a review of reports on bacterial virulence factors-protein tyrosine phosphatases as potential therapeutic targets.
Wydawca
Czasopismo
Rocznik
Tom
Strony
679--699
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
- Gdański Uniwersytet Medyczny, Wydział Lekarski, Katedra Chemii Medycznej ul. Dębinki 1, 80-211 Gdańsk
autor
- Gdański Uniwersytet Medyczny, Wydział Lekarski, Katedra Chemii Medycznej ul. Dębinki 1, 80-211 Gdańsk
autor
- Gdański Uniwersytet Medyczny, Wydział Lekarski, Katedra Chemii Medycznej ul. Dębinki 1, 80-211 Gdańsk
autor
- Gdański Uniwersytet Medyczny, Wydział Lekarski, Katedra Chemii Medycznej ul. Dębinki 1, 80-211 Gdańsk
- Gdański Uniwersytet Medyczny, Wydział Lekarski, Katedra Chemii Medycznej ul. Dębinki 1, 80-211 Gdańsk
autor
- Gdański Uniwersytet Medyczny, Wydział Lekarski, Katedra Chemii Medycznej ul. Dębinki 1, 80-211 Gdańsk
Bibliografia
- [1] L. Chen, J. Yang, J. Yu, Z. Yao, L. Sun, Y. Shen, Q. Jin, VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res., 2004, 33, D325.
- [2] S.E. Whitmore, R.J. Lamont, Tyrosine phosphorylation and bacterial virulence. Int. J. Oral Sci., 2012, 4, 1.
- [3] P. Heneberg, Finding the smoking gun: protein tyrosine phosphatases as tools and targets of unicellular microorganisms and viruses. Curr. Med. Chem., 2012, 19, 1530.
- [4] Y. Dong, S-Y. Jiang, Q. Zhou, Y. Cao, Group B Streptococcus causes severe sepsis in term neonates: 8 years experience of a major Chinese neonatal unit. World J Pediatr. 2017, 13(4), 314.
- [5] H. Hartman-Adams, C. Banvard, G. Juckett, Impetigo: Diagnosis and Treatment, Am Fam Physician. 2014, 90(4), 229.
- [6] M. Ferri, E. Ranucci, P. Romagnoli, V. Giaccone, Antimicrobial resistance: A global emerging threat to public health systems. Crit Rev Food Sci Nutr. 2017, 57(13), 2857.
- [7] T. Ozorowski, Klebsiella pneumoniae New Delhi—era postantybiotykowa w Polsce. [online], Medycyna Praktyczna, 2018, 6, 105, [dostęp 25.07.2019], Dostępny w Internecie: https://infekcje.mp.pl/publicystyka/188550,klebsiella-pneumoniae-new-delhierapostantybiotykowa-wpolsce-cz-1.html
- [8] M. Bulanda, Wieloopomość drobnoustrojów a skuteczność leczenia zakażeń. O opornych bakteriach dla nie całkiem opornych chirurgów - strona 2. [online], Medycyna Praktyczna, 2016, [dostęp 25.07.2019], Dostępny w Internecie: ttps://www.mp.pl/chirurgia/leczenie-ran/145380,wieloopornosc drobnoustrojow-a-skutecznosc-leczenia-zakazen,1
- [9] R. Korbut, Farmakologia, PZWL, Warszawa, 2012.
- [10] A.S. Cross, What is a virulence factor? Crit. Care. 2008, 12, 197.
- [11] T.M. Wassenaar, W. Gaastra, Bacterial virulence: can we draw the line? FEMS Microbiol. Lett. 2001, 201, 1.
- [12] A.K. Sharma, N. Dhasmana, N. Dubey, N. Kumar, A. Gangwal, M. Gupta, Y. Singh, Bacterial Virulence Factors: Secreted for Survival. Indian J. Microbiol. 2017, 57, 1.
- [13] M. Janczarek, J.M. Vinardell, P. Lipa, M. Karaś, Hanks-Type Serine/Threonine Protein Kinases and Phosphatases in Bacteria: Roles in Signaling and Adaptation to Various Environments. Int. J. Mol. Sci. 2018, 19(10), 2872.
- [14] C. Grangeasse, A.J. Cozzone, J. Deutscher, I. Mijakovic, Tyrosine phosphorylation: an emerging regulatory device of bacterial physiology. Trends Biochem. Sci. 2007, 32, 86.
- [15] L. Shi, M. Potts, P.J. Kennelly, The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol. Rev. 1998, 22, 229.
- [16] A.J. Cozzone, C. Grangeasse, P. Doublet, B. Duclos, Protein phosphorylation on tyrosine in bacteria. Arch. Microbiol. 2004, 181, 171.
- [17] T. Kostrzewa, J. Styszko, M. Gorska-Ponikowska, T. Sledzinski, A. Kuban-Jankowska, Inhibitors of Protein Tyrosine Phosphatase PTP1B With Anticancer Potential. Anticancer Res. 2019, 39, 3379.
- [18] P. Chiarugi, P. Cirri, Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem. Sci. 2003, 28, 509.
- [19] C, Persson, T. Sjöblom, A. Groen, Preferential oxidation of the second phosphatase domain of receptor-like PTP-a revealed by an antibody against oxidized protein tyrosine phosphatases. PNAS. 2004, 101, 1886.
- [20] A. Salmeen, J.N. Andersen, M.P. Myers, T-C. Meng, J.A. Hinks, N.K. Tonks, D. Barford, Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature. 2003, 423, 769.
- [21] J.E. Galán, Molecular genetic bases of Salmonella entry into host cells. Mol. Microbiol. 1996, 20, 263.
- [22] J. Mehraj, W. Witte, M.K. Akmatov, F. Layer, G. Werner, G. Krause, Epidemiology of Staphylococcus aureus Nasal Carriage Patterns in the Community. Curr Top Microbiol Immunol. 2016, 398, 55.
- [23] A. Jenkins, B.A. Diep, T.T. Mai, V. NH, P. Warrener, J. Suzich, C.K. Stover, B.R. Sellman, Differential expression and roles of Staphylococcus aureus virulence determinants during colonization and disease. MBio. 2015, 6(1), e02272-14.
- [24] A.D. Khosravi, A. Jenabi, E.A. Montazeri, Distribution of genes encoding resistance to aminoglycoside modifying enzymes in methicillin-resistant Staphylococcus aureus (MRSA) strains. Kaohsiung J Med Sci. 2017, 33(12), 587.
- [25] W.A. McGuinness, N. Malachowa, F.R. DeLeo, Vancomycin Resistance in Staphylococcus aureus. Yale J Biol Med. 2017, 90(2), 269.
- [26] M. Korzeniewska-Koseła, Gruźlica i choroby układu oddechowego w Polsce w 2018 roku, Instytut Gruźlicy i Chorób Płuc, Warszawa, 2019.
- [27] M. Korzeniewska-Koseła, Postępowanie w gruźlicy: podsumowanie wytycznych European Centre for Disease Prevention and Control i European Respiratory Society 2017 oraz World Health Organization 2018. [online], Medycyna Praktyczna. 2018, 11, 42, [dostęp 25.07.2019], Dostępny w Internecie: https://www.mp.pl/pulmonologia/artykulywytyczne/inne/198944,postepowanie-w-gruzlicy-wytyczne-2018
- [28] K. Cohen, G. Maartens, A safety evaluation of bedaquiline for the treatment of multi-drug resistant tuberculosis. Expert Opin Drug Saf. 2019, [dostęp 25.07.2019], Dostępny w Internecie: https://doi.org/10.1080/14740338.2019.1648429
- [29] C. Vega, S. Chou, K. Engel, M.E. Harrell, L. Rajagopal, C. Grundner, Structure and Substrate Recognition of the Staphylococcus aureus Protein Tyrosine Phosphatase PtpA. J. Mol. Biol. 2011, 413, 24.
- [30] S. Mukherjee, R. Dhar, A.K. Das, Analyzing the catalytic mechanism of protein tyrosine phosphatase PtpB from Staphylococcus aureus through site-directed mutagenesis. Int. J. Biol. Macromol. 2009, 45, 463.
- [31] World Health Organization, Salmonella (non typhoidal), 2013, [dostęp 25.07.2019], Dostępny w Internecie:http://web.archive.org/web/20160403203406/http://www.who.int/mediacentre/factsheets/fs139/en/
- [32] A. Klochko, Salmonella Infection (Salmonellosis) Treatment & Management, 2018, [dostęp 25.07.2019], Dostępny w Internecie: https://emedicine.medscape.com/article/228174-treatment
- [33] J.E. Galán, J.B. Bliska, Cross-talk between bacterial pathogens and their host cells. Annu. Rev. Cell Dev. Biol. 1996, 12, 221.
- [34] Y. Fu, J.E. Galan, The Salmonella typhimurium tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton. Mol. Microbiol. 1998, 27, 359.
- [35] C.E. Stebbins, J.E. Galán, Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1. Mol. Cell. 2000, 6, 1449.
- [36] K. Kaniga, J. Uralil, J.B. Bliska, J.E. Galán, A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurium. Mol. Microbiol. 1996, 21, 633.
- [37] P. Heczko, Mikrobiologia lekarska, PZWL, Warszawa, 2014.
- [38] M. Achtman, G. Morelli, P. Zhu, T. Wirth, I. Diehl, B. Kusecek, A.J. Vogler, D.M. Wagner, C. J. Allender, W.R. Easterday, V. Chenal-Francisque, P. Worsham, N.R. Thomson, J. Parkhill, L. E. Lindler, E. Carniel, P. Keim, Microevolution and history of the plague bacillus, Yersinia pestis. Proc. Natl. Acad. Sci. 2004, 101, 17837.
- [39] J.E. Trosky, A.D.B. Liverman, K. Orth, Yersinia outer proteins: Yops. Cell. Microbiol. 2008, 10, 557.
- [40] A. Kuban-Jankowska, K.K. Sahu, M. Gorska, J.A. Tuszynski, M. Wozniak, Chicoric acid binds to two sites and decreases the activity of the YopH bacterial virulence factor. Oncotarget, 2016, 7, 2229.
- [41] M.F. Moradali, S. Ghods, B.H. Rehm, Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence, Front Cell Infect Microbiol. 2017, 7, 39.
- [42] K.A. Coggan, M.C. Wolfgang, Global regulatory pathways and cross-talk control pseudomonas aeruginosa environmental lifestyle and virulence phenotype. Curr Issues Mol Biol. 2012, 14(2), 47.
- [43] K. Xu, S. Li1, W. Yang, K. Li, Y. Bai, Y. Xu, J. Jin, Y. Wang, M. Bartlam, Structural and Biochemical Analysis of Tyrosine Phosphatase Related to Biofilm Formation A (TpbA) from the Opportunistic Pathogen Pseudomonas aeruginosa PAO1. PLoS One, 2015, 10, 1.
- [44] J.M. Noto, C.N. Cornelissen, Identification of TbpA Residues Required for Transferrin-Iron Utilization by Neisseria gonorrhoeae. Infect. Immun. 2008, 76, 1960.
- [45] A. Mascarello, L.D. Chiaradia, J. Vernal, A. Villarino, R.V.C. Guido, P. Perizzolo, V. Poirier, D. Wong, P.G.A. Martins, R.J. Nunes, R.A. Yunes, A.D. Andricopulo, Y. Av-Gay, H. Hernán, Inhibition of Mycobacterium tuberculosis tyrosine phosphatase PtpA by synthetic chalcones: Kinetics, molecular modeling, toxicity and effect on growth. Bioorg. Med. Chem. 2010, 18, 3783.
- [46] L.D. Chiaradia, P.G.A. Martins, M.N.S. Cordeiro, R.V.C. Guido, G. Ecco, A.D. Andricopulo, R. A. Yunes, J. Vernal, R.J. Nunes, H. Terenzi, Synthesis, Biological Evaluation, And Molecular Modeling of Chalcone Derivatives As Potent Inhibitors of Mycobacterium tuberculosis Protein Tyrosine Phosphatases (PtpA and PtpB). J. Med. Chem. 2012, 55(1), 390.
- [47] A. Mascarello, M. Mori, L. D. Chiaradia-Delatorre, A. C. O. Menegatti, F. D. Monache, F. Ferrari, R. A. Yunes, R. J. Nunes, H. Terenzi, B. Botta, M. Botta, Discovery of Mycobacterium tuberculosis Protein Tyrosine Phosphatase B (PtpB) Inhibitors from Natural Products. PLoS One, 2013, 8, 1.
- [48] C. Grundner, D. Perrin, R. Hooft van Huijsduijnen, D. Swinnen, J. Gonzalez, C.L. Gee, T.N. Wells, T. Alber, Structural Basis for Selective Inhibition of Mycobacterium tuberculosis Protein Tyrosine Phosphatase PtpB. Structure. 2007, 15(4), 499.
- [49] F. Liang, Z. Huang, S-Y. Lee, J. Liang, M.I. Ivanov, A. Alonso, J.B. Bliska, D.S. Lawrence, T. Mustelin, Z-Y. Zhang, Aurintricarboxylic acid blocks in vitro and in vivo activity of YopH, an essential virulent factor of Yersinia pestis, the agent of plague. J. Biol. Chem. 2003, 278, 41734.
- [50] A. Kuban-Jankowska, K.K. Sahu, M. Gorska, P. Niedzialkowski, J.A. Tuszynski, T. Ossowski, M. Wozniak, Aurintricarboxylic acid structure modifications lead to reduction of inhibitory properties against virulence factor YopH and higher cytotoxicity. World J. Microbiol. Biotechnol. 2016, 32, 163.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60d9d8d0-c1eb-43fe-895a-6fecc9f44ab0