PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational studies of the mitochondrial carrier family SLC25. Present status and future perspectives

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The members of the mitochondrial carrier family, also known as solute carrier family 25 (SLC25), are transmembrane proteins involved in the translocation of a plethora of small molecules between the mitochondrial intermembrane space and the matrix. These transporters are characterized by three homologous domains structure and a transport mechanism that involves the transition between different conformations. Mutations in regions critical for these transporters’ function often cause several diseases, given the crucial role of these proteins in the mitochondrial homeostasis. Experimental studies can be problematic in the case of membrane proteins, in particular concerning the characterization of the structure–function relationships. For this reason, computational methods are often applied in order to develop new hypotheses or to support/explain experimental evidence. Here the computational analyses carried out on the SLC25 members are reviewed, describing the main techniques used and the outcome in terms of improved knowledge of the transport mechanism. Potential future applications on this protein family of more recent and advanced in silico methods are also suggested.
Rocznik
Strony
65--78
Opis fizyczny
Bibliogr. 177 poz., rys., tab.
Twórcy
  • Department of Sciences, Roma Tre University, Rome, Italy
  • Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146 Rome, Italy
  • National Institute of Nuclear Physics, Roma Tre Section, Rome, Italy, Phone: +39 06 57336362, Fax: +39 06 57336321
Bibliografia
  • 1. Palmieri F. Mitochondrial transporters of the SLC25 family and associated diseases: a review. J Inherit Metab Dis 2014;37:565-75.
  • 2. Claeys D, Azzi A. Tricarboxylate carrier of bovine liver mitochondria. Purification and reconstitution. J Biol Chem 1989; 264:14627-30.
  • 3. Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trézéguet V, Lauquin GJM, Brandolin G. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 2003;426: 39-44.
  • 4. Palmieri F, Stipani I, Quagliariello E, Klingenberg M. Kinetic study of the tricarboxylate carrier in rat liver mitochondria. Eur J Biochem 1972;26:587-94.
  • 5. Majd H, King MS, Smith AC, Kunji ERS. Pathogenic mutations of the human mitochondrial citrate carrier SLC25A1 lead to impaired citrate export required for lipid, dolichol, ubiquinone and sterol synthesis. Biochim Biophys Acta Bioenerg 2018;1859:1-7.
  • 6. Porcelli V, Longo A, Palmieri L, Closs EI, Palmieri F. Asymmetric dimethylarginine is transported by the mitochondrial carrier SLC25A2. Amino Acids 2016;48:427-36.
  • 7. Stappen R, Krämer R. Kinetic mechanism of phosphate/phosphate and phosphate/OH-antiports catalyzed by reconstituted phosphate carrier from beef heart mitochondria. J Biol Chem 1994; 269:11240-6.
  • 8. Boulet A, Vest KE, Maynard MK, Gammon MG, Russell AC, Mathews AT, et al. The mammalian phosphate carrier SLC25A3 is a mitochondrial copper transporter required for cytochrome c oxidase biogenesis. J Biol Chem 2018;293:1887-96.
  • 9. Bertholet AM, Chouchani ET, Kazak L, Angelin A, Fedorenko A, Long JZ, et al. H+ transport is an integral function of the mitochondrial ADP/ATP carrier. Nature 2019;571:515-20.
  • 10. Klingenberg M. The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys Acta Biomembr 2008;1778: 1978-2021.
  • 11. Stepien G, Torroni A, Chung AB, Hodge JA, Wallaces DC. Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation. J Biol Chem 1992;267:14592-7.
  • 12. Casteilla L, Blondel O, Klaus S, Raimbault S, Diolez P, Moreau F, et al. Stable expression of functional mitochondrial uncoupling protein in Chinese hamster ovary cells. Proc Natl Acad Sci USA 1990;87. https://doi.org/10.1073/pnas.87.13.5124.
  • 13. Berardi MJ, Chou JJ. Fatty acid flippase activity of UCP2 is essential for its proton transport in mitochondria. Cell Metabol 2014;20:541-52.
  • 14. Vozza A, Parisi G, De Leonardis F, Lasorsa FM, Castegna A, Amorese D, et al. UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci USA 2014;111:960-5.
  • 15. Macher G, Koehler M, Rupprecht A, Kreiter J, Hinterdorfer P, Pohl EE. Inhibition of mitochondrial UCP1 and UCP3 by purine nucleotides and phosphate. Biochim Biophys Acta Biomembr 2018;1860:664-72.
  • 16. Palmieri F, Prezioso G, Quagliariello E, Klingenberg M. Kinetic study of the dicarboxylate carrier in rat liver mitochondria. Eur J Biochem 1971;22:66-74.
  • 17. Crompton M, Palmieri F, Capano M, Quagliariello E. The transport of thiosulphate in rat liver mitochondria. FEBS Lett 1974;46: 247-50.
  • 18. Chen Z, Lash LH. Evidence for mitochondrial uptake of glutathione by dicarboxylate and 2-oxoglutarate carriers. J Pharmacol Exp Therapeut 1998;285:608-18.
  • 19. Palmieri F, Quagliariello E, Klingenberg M. Kinetics and specificity of the oxoglutarate carrier in rat-liver mitochondria. Eur J Biochem 1972;29:408-16.
  • 20. Passarella S, Palmieri F, Quagliariello E. The transport of oxaloacetate in isolated mitochondria. Arch Biochem Biophys 1977;180:160-8.
  • 21. LaNoue KF, Tischler ME. Electrogenic characteristics of the mitochondrial glutamate aspartate antiporter. J Biol Chem 1974; 249:7522-8.
  • 22. Palmieri L, Pardo B, Lasorsa FM, Del Arco A, Kobayashi K, Iijima M, et al. Citrin and aralar1 are Ca2+ -stimulated aspartate/glutamate transporters in mitochondria. EMBO J 2001;20:5060-9.
  • 23. Gorgoglione R, Porcelli V, Santoro A, Daddabbo L, Vozza A, Monné M, et al. The human uncoupling proteins 5 and 6 (UCP5/ SLC25A14 and UCP6/SLC25A30) transport sulfur oxyanions, phosphate and dicarboxylates. Biochim Biophys Acta Bioenerg 2019;1860:724-33.
  • 24. Fiermonte G, Dolce V, David L, Santorelli FM, Dionisi-Vici C, Palmieri F, et al. The mitochondrial ornithine transporter: bacterial expression, reconstitution, functional characterization, and tissue distribution of two human isoforms. J Biol Chem 2003; 278:32778-83.
  • 25. Agrimi G, Russo A, Scarcia P, Palmieri F. The human gene SLC25A17 encodes a peroxisomal transporter of coenzyme A, FAD and NAD+ . Biochem J 2012;443:241-7.
  • 26. Fiermonte G, Palmieri L, Todisco S, Agrimi G, Palmieri F, Walker JE. Identification of the mitochondrial glutamate transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution of two human isoforms. J Biol Chem 2002; 277:19289-94.
  • 27. Kang J, Samuels DC. The evidence that the DNC (SLC25A19) is not the mitochondrial deoxyribonucleotide carrier. Mitochondrion 2008;8:103-8.
  • 28. Indiveri C, Iacobazzi V, Giangregorio N, Palmieri F. Bacterial overexpression, purification, and reconstitution of the carnitine/ acylcarnitine carrier from rat liver mitochondria. Biochem Biophys Res Commun 1998;249:589-94.
  • 29. Fiermonte G, Dolce V, Palmieri L, Ventura M, Runswick MJ, Palmieri F, et al. Identification of the human mitochondrial oxodicarboxylate carrier. Bacterial expression, reconstitution, functional characterization, tissue distribution, and chromosomal location. J Biol Chem 2001;276:8225-30.
  • 30. Fiermonte G, De Leonardis F, Todisco S, Palmieri L, Lasorsa FM, Palmieri F. Identification of the mitochondrial ATP-Mg/Pi transporter: bacterial expression, reconstitution, functional characterization, and tissue distribution. J Biol Chem 2004;279: 30722-30.
  • 31. Agrimi G, Di Noia MA, Marobbio CMT, Fiermonte G, Lasorsa FM, Palmieri F. Identification of the human mitochondrial S-adenosylmethionine transporter: bacterial expression, reconstitution, functional characterization and tissue distribution. Bio chem J 2004;379:183-90.
  • 32. Hoang T, Smith MD, Jelokhani-Niaraki M. Toward understanding the mechanism of ion transport activity of neuronal uncoupling proteins UCP2, UCP4, and UCP5. Biochemistry 2012;51:4004-14.
  • 33. Paradkar PN, Zumbrennen KB, Paw BH, Ward DM, Kaplan J. Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2. Mol Cell Biol 2009;29: 1007-16.
  • 34. Porcelli V, Fiermonte G, Longo A, Palmieri F. The human gene SLC25A29, of solute carrier family 25, encodes a mitochondrial transporter of basic amino acids. J Biol Chem 2014;289: 13374-84.
  • 35. Dolce V, Scarcia P, Iacopetta D, Palmieri F. A fourth ADP/ATP carrier isoform in man: identification, bacterial expression, functional characterization and tissue distribution. FEBS Lett 2005;579:633-7.
  • 36. McCarthy EA, Titus SA, Taylor SM, Jackson-Cook C, Moran RG. A mutation inactivating the mitochondrial inner membrane folate transporter creates a glycine requirement for survival of Chinese hamster cells. J Biol Chem 2004;279:33829-36.
  • 37. Titus SA, Moran RG. Retrovirally mediated complementation of the glyB phenotype. Cloning of a human gene encoding the carrier for entry of folates into mitochondria. J Biol Chem 2000; 275:36811-7.
  • 38. Di Noia MA, Todisco S, Cirigliano A, Rinaldi T, Agrimi G, Iacobazzi V, et al. The human SLC25A33 and SLC25A36 genes of solute carrier family 25 encode two mitochondrial pyrimidine nucleotide transporters. J Biol Chem 2014;289:33137-48.
  • 39. Lunetti P, Damiano F, De Benedetto G, Siculella L, Pennetta A, Muto L, et al. Characterization of human and yeast mitochondrial glycine carriers with implications for heme biosynthesis and anemia. J Biol Chem 2016;291:19746-59.
  • 40. Traba J, Satrústegui J, del Arco A. Characterization of SCaMC-3-like/slc25a41, a novel calcium-independent mitochondrial ATP-Mg/Pi carrier. Biochem J 2009;418:125-33.
  • 41. Fiermonte G, Paradies E, Todisco S, Marobbio CMT, Palmieri F. A novel member of solute carrier family 25 (SLC25A42) is a transporter of coenzyme A and adenosine 3′,5′-diphosphate in human mitochondria. J Biol Chem 2009;284:18152-9.
  • 42. Yoneshiro T, Wang Q, Tajima K, Matsushita M, Maki H, Igarashi K, et al. BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature 2019;572:614-9.
  • 43. Jin X, Yang YD, Chen K, Lv ZY, Zheng L, Liu YP, et al. HDMCP uncouples yeast mitochondrial respiration and alleviates steatosis in L02 and hepG2 cells by decreasing ATP and H2O2 levels: a novel mechanism for NAFLD. J Hepatol 2009;50: 1019-28.
  • 44. Luongo TS, Eller JM, Lu MJ, Niere M, Raith F, Perry C, et al. SLC25A51 is a mammalian mitochondrial NAD+ transporter. Nature 2020;588:174-9.
  • 45. Robinson AJ, Overy C, Kunji ERS. The mechanism of transport by mitochondrial carriers based on analysis of symmetry. Proc Natl Acad Sci USA 2008;105:17766-71.
  • 46. Palmieri F, Scarcia P, Monné M. Diseases caused by mutations in mitochondrial carrier genes SLC25: a review. Biomolecules 2020; 10:655.
  • 47. Palmieri F, Monné M. Discoveries, metabolic roles and diseases of mitochondrial carriers: a review. Biochim Biophys Acta Mol Cell Res 2016;1863:2362-78.
  • 48. Tsirigos KD, Peters C, Shu N, Käll L, Elofsson A. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res 2015;43:W401-7.
  • 49. Webb B, Sali A. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinf 2016;54. 5.6.1-37.
  • 50. Croll TI, Sammito MD, Kryshtafovych A, Read RJ. Evaluation of template-based modeling in CASP13. Proteins Struct Funct Bioinf 2019;87:1113-27.
  • 51. Baker D, Sali A. Protein structure prediction and structural genomics. Science 2001;294:93-6.
  • 52. Abriata LA, Tamò GE, Monastyrskyy B, Kryshtafovych A, Dal Peraro M. Assessment of hard target modeling in CASP12 reveals an emerging role of alignment-based contact prediction methods. Proteins Struct Funct Bioinf 2018;86:97-112.
  • 53. Yang J, Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 2015;43: W174-81.
  • 54. Karplus M, McCammon JA. Molecular dynamics simulations of biomolecules. Nat Struct Biol 2002;9:646-52.
  • 55. Wu EL, Cheng X, Jo S, Rui H, Song KC, Dávila-Contreras EM, et al. CHARMM-GUI membrane builder toward realistic biological membrane simulations. J Comput Chem 2014;35:1997-2004.
  • 56. Kandt C, Ash WL, Peter Tieleman D. Setting up and running molecular dynamics simulations of membrane proteins. Methods 2007;41:475-88.
  • 57. Jefferies D, Khalid S. Atomistic and coarse-grained simulations of membrane proteins: a practical guide. Methods 2020;185:15-27.
  • 58. Sugita Y, Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 1999;314:141-51.
  • 59. Seeliger D, de Groot BL. Protein thermostability calculations using alchemical free energy simulations. Bio phys J 2010;98: 2309-16.
  • 60. Laio A, Parrinello M. Escaping free-energy minima. Proc Natl Acad Sci USA 2002;99:12562-6.
  • 61. Darve E, Rodríguez-Gómez D, Pohorille A. Adaptive biasing force method for scalar and vector free energy calculations. J Chem Phys 2008;128:144120.
  • 62. Harpole TJ, Delemotte L. Conformational landscapes of membrane proteins delineated by enhanced sampling molecular dynamics simulations. Biochim Biophys Acta Biomembr 2018; 1860:909-26.
  • 63. Robinson AJ, Kunji ERS. Mitochondrial carriers in the cytoplasmic state have a common substrate binding site. Proc Natl Acad Sci USA 2006;103:2617-22.
  • 64. Kunji ERS, Robinson AJ. The conserved substrate binding site of mitochondrial carriers. Biochim Biophys Acta Bioenerg 2006; 1757:1237-48.
  • 65. Falconi M, Chillemi G, Di Marino D, D’Annessa I, Morozzo della Rocca B, Palmieri L, et al. Structural dynamics of the mitochondrial ADP/ATP carrier revealed by molecular dynamics simulation studies. Proteins Struct Funct Bioinf 2006; 65:681-91.
  • 66. Wang Y, Tajkhorshid E. Electrostatic funneling of substrate in mitochondrial inner membrane carriers. Proc Natl Acad Sci USA 2008;105:9598-603.
  • 67. Dehez F, Pebay-Peyroula E, Chipot C. Binding of ADP in the mitochondrial ADP/ATP carrier is driven by an electrostatic funnel. J Am Chem Soc 2008;130:12725-33.
  • 68. Pietropaolo A, Pierri CL, Palmieri F, Klingenberg M. The switching mechanism of the mitochondrial ADP/ATP carrier explored by free-energy landscapes. Biochim Biophys Acta Bioenerg 2016; 1857:772-81.
  • 69. Barducci A, Bussi G, Parrinello M. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 2008;100:020603.
  • 70. Raiteri P, Laio A, Gervasio FL, Micheletti C, Parrinello M. Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics. J Phys Chem B 2006;110:3533-9.
  • 71. Prinz JH, Wu H, Sarich M, Keller B, Senne M, Held M, et al. Markov models of molecular kinetics: generation and validation. J Chem Phys 2011;134:174105.
  • 72. Springett R, King MS, Crichton PG, Kunji ERS. Modelling the free energy profile of the mitochondrial ADP/ATP carrier. Biochim Biophys Acta Bioenerg 2017;1858:906-14.
  • 73. Tamura K, Hayashi S. Atomistic modeling of alternating access of a mitochondrial ADP/ATP membrane transporter with molecular simulations. PloS One 2017;12:e0181489.
  • 74. Tamura K, Hayashi S. Linear response path following: a molecular dynamics method to simulate global conformational changes of protein upon ligand binding. J Chem Theor Comput 2015;11: 2900-17.
  • 75. Yi Q, Li Q, Yao S, Chen Y, Guan MX, Cang X. Molecular dynamics simulations on apo ADP/ATP carrier shed new lights on the featured motif of the mitochondrial carriers. Mitochondrion 2019; 47:94-102.
  • 76. Horvath SE, Daum G. Lipids of mitochondria. Prog Lipid Res 2013; 52:590-614.
  • 77. Beyer K, Klingenberg M. ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by 31P nuclear magnetic resonance. Biochemistry 1985; 24:3821-6.
  • 78. Klingenberg M. Cardiolipin and mitochondrial carriers. Biochim Biophys Acta Biomembr 2009;1788:2048-58.
  • 79. Ruprecht JJ, Hellawell AM, Harding M, Crichton PG, McCoy AJ, Kunji ERS. Structures of yeast mitochondrial ADP/ATP carriers support a domain-based alternating-access transport mechanism. Proc Natl Acad Sci USA 2014;111:E426-34.
  • 80. Berardi MJ, Shih WM, Harrison SC, Chou JJ. Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 2011;476:109-14.
  • 81. Hedger G, Rouse SL, Domański J, Chavent M, Koldsø H, Sansom MSP. Lipid-loving ANTs: molecular simulations of cardiolipin interactions and the organization of the adenine nucleotide translocase in model mitochondrial membranes. Biochemistry 2016;55:6238-49.
  • 82. Nury H, Dahout-Gonzalez C, Trézéguet V, Lauquin G, Brandolin G, Pebay-Peyroula E. Structural basis for lipid-mediated interactions between mitochondrial ADP/ATP carrier monomers. FEBS Lett 2005;579:6031-6.
  • 83. Duncan AL, Ruprecht JJ, Kunji ERS, Robinson AJ. Cardiolipin dynamics and binding to conserved residues in the mitochondrial ADP/ATP carrier. Biochim Biophys Acta Biomembr 2018;1860: 1035-45.
  • 84. Mao X, Yao S, Yi Q, Xu ZM, Cang X. Function-related asymmetry of the specific cardiolipin binding sites on the mitochondrial ADP/ATP carrier. Biochim Biophys Acta Biomembr 2021;1863:183466 https://doi.org/10.1016/j.bbamem.2020.183466.
  • 85. Ruprecht JJ, King MS, Zögg T, Aleksandrova AA, Pardon E, Crichton PG, et al. The molecular mechanism of transport by the mitochondrial ADP/ATP carrier. Cell 2019;176:435-47.e15.
  • 86. Škulj S, Brkljača Z, Vazdar M. Molecular dynamics simulations of the elusive matrix-open state of mitochondrial ADP/ATP carrier. Isr J Chem 2020;60:735-43.
  • 87. Abriata LA, Tamò GE, Dal Peraro M. A further leap of improvement in tertiary structure prediction in CASP13 prompts new routes for future assessments. Proteins Struct Funct Bioinf 2019;87: 1100-12.
  • 88. Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, et al. Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13). Proteins Struct Funct Bioinf 2019;87:1141-8.
  • 89. Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, et al. Improved protein structure prediction using potentials from deep learning. Nature 2020;577:706-10.
  • 90. Xu J. Distance-based protein folding powered by deep learning. Proc Natl Acad Sci USA 2019;116:16856-65.
  • 91. Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D. Improved protein structure prediction using predicted interresidue orientations. Proc Natl Acad Sci USA 2020;117: 1496-503.
  • 92. Bonomi M, Bussi G, Camilloni C, Tribello GA, Banáš P, Barducci A, et al. Promoting transparency and reproducibility in enhanced molecular simulations. Nat Methods 2019;16:670-3.
  • 93. Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G. PLUMED 2: new feathers for an old bird. Comput Phys Commun 2014;185:604-13.
  • 94. Heo L, Feig M. Experimental accuracy in protein structure refinement via molecular dynamics simulations. Proc Natl Acad Sci USA 2018;115:13276-81.
  • 95. Dutagaci B, Heo L, Feig M. Structure refinement of membrane proteins via molecular dynamics simulations. Proteins Struct Funct Bioinf 2018;86:738-50.
  • 96. Krebs JJR, Hauser H, Carafoli E. Asymmetric distribution of phospholipids in the inner membrane of beef heart mitochondria. J Biol Chem 1979;254:5308-16.
  • 97. Comte J, Maǐsterrena B, Gautheron DC. Lipid composition and protein profiles of outer and inner membranes from pig heart mitochondria. Comparison with microsomes. Biochim Biophys Acta Biomembr 1976;419:271-84.
  • 98. Colbeau A, Nachbaur J, Vignais PM. Enzymac characterization and lipid composition of rat liver subcellular membranes. Biochim Biophys Acta Biomembr 1971;249:462-92.
  • 99. Marrink SJ, Corradi V, Souza PCT, Ingólfsson HI, Tieleman DP, Sansom MSP. Computational modeling of realistic cell membranes. Chem Rev 2019;119:6184-226.
  • 100. Fleetwood O, Kasimova MA, Westerlund AM, Delemotte L. Molecular insights from conformational ensembles via machine learning. Biophys J 2020;118:765-80.
  • 101. Invernizzi M, Parrinello M. Rethinking metadynamics: from bias potentials to probability distributions. J Phys Chem Lett 2020;11: 2731-6.
  • 102. Dalbon P, Brandolin G, Boulay F, Hoppe J, Vignais PV. Mapping of the nucleotide-binding sites in the ADP/ATP carrier of beef heart mitochondria by photolabeling with 2-azido[α-32p]adenosine diphosphate. Biochemistry 1988;27:5141-9.
  • 103. Crichton PG, Lee Y, Ruprecht JJ, Cerson E, Thangaratnarajah C, King MS, et al. Trends in thermostability provide information on the nature of substrate, inhibitor, and lipid interactions with mitochondrial carriers. J Biol Chem 2015;290:8206-17.
  • 104. Giangregorio N, Tonazzi A, Console L, Prejanò M, Marino T, Russo N, et al. Effect of copper on the mitochondrial carnitine/ acylcarnitine carrier via interaction with Cys136 and Cys155. Possible implications in pathophysiology. Molecules 2020;25: 820.
  • 105. Zoonens M, Comer J, Masscheleyn S, Pebay-Peyroula E, Chipot C, Miroux B, et al. Dangerous liaisons between detergents and membrane proteins. the case of mitochondrial uncoupling protein 2. J Am Chem Soc 2013;135:15174-82.
  • 106. Hoang T, Smith MD, Jelokhani-Niaraki M. Toward understanding the mechanism of ion transport activity of neuronal uncoupling proteins UCP2, UCP4, and UCP5. Biochemistry 2012;51: 4004-14.
  • 107. Sun J, Aluvila S, Kotaria R, Mayor JA, Walters DE, Kaplan RS. Mitochondrial and plasma membrane citrate transporters: discovery of selective inhibitors and application to structure/ function analysis. Mol Cell Pharmacol 2010;2:101-10.
  • 108. Monné M, Miniero DV, Daddabbo L, Robinson AJ, Kunji ERS, Palmieri F. Substrate specificity of the two mitochondrial ornithine carriers can be swapped by single mutation in substrate binding site. J Biol Chem 2012;287:7925-34.
  • 109. Tessa A, Fiermonte G, Dionisi-Vici C, Paradies E, Baumgartner MR, Chien Y-H, et al. Identification of novel mutations in the SLC25A15 gene in hyperornithinemia-hyperammonemiahomocitrullinuria (HHH) syndrome: a clinical, molecular, and functional study. Hum Mutat 2009;30:741-8.
  • 110. Nota B, Struys EA, Pop A, Jansen EE, Fernandez Ojeda MR, Kanhai WA, et al. Deficiency in SLC25A1, encoding the mitochondrial citrate carrier, causes combined D-2- and L-2-hydroxyglutaric aciduria. Am J Hum Genet 2013;92:627-31.
  • 111. Edvardson S, Porcelli V, Jalas C, Soiferman D, Kellner Y, Shaag A, et al. Agenesis of corpus callosum and optic nerve hypoplasia due to mutations in SLC25A1 encoding the mitochondrial citrate transporter. J Med Genet 2013;50:240-5.
  • 112. Al.-Futaisi A, Ahmad F, Al.-Kasbi G, Al.-Thihli K, Koul R, Al.-Maawali A. Missense mutations in SLC25A1 are associated with congenital myasthenic syndrome type 23. Clin Genet 2020;97: 666-7.
  • 113. Chaouch A, Porcelli V, Cox D, Edvardson S, Scarcia P, De Grassi A, et al. Mutations in the mitochondrial citrate carrier SLC25A1 are associated with impaired neuromuscular transmission. J Neuromuscul Dis 2014;1:75-90.
  • 114. Balaraju S, Töpf A, McMacken G, Kumar VP, Pechmann A, Roper H, et al. Congenital myasthenic syndrome with mild intellectual disability caused by a recurrent SLC25A1 variant. Eur J Hum Genet 2020;28:373-7.
  • 115. Bhoj EJ, Li M, Ahrens-Nicklas R, Pyle LC, Wang J, Zhang VW, et al. Pathologic variants of the mitochondrial phosphate carrier SLC25A3: two new patients and expansion of the cardiomyopathy/skeletal myopathy phenotype with and without lactic acidosis. JIMD Rep 2015;19:59-66. Springer.
  • 116. Mayr JA, Merkel O, Kohlwein SD, Gebhardt BR, Böhles H, Fötschl U, et al. Mitochondrial phosphate-carrier deficiency: a novel disorder of oxidative phosphorylation. Am J Hum Genet 2007; 80:478-84.
  • 117. Mayr JA, Zimmermann FA, Horváth R, Schneider HC, Schoser B, Holinski-Feder E, et al. Deficiency of the mitochondrial phosphate carrier presenting as myopathy and cardiomyopathy in a family with three affected children. Neuromuscul Disord 2011;21:803-8.
  • 118. Thompson K, Majd H, Dallabona C, Reinson K, King MS, Alston CL, et al. Recurrent de novo dominant mutations in SLC25A4 cause severe early-onset mitochondrial disease and loss of mitochondrial DNA copy number. Am J Hum Genet 2016;99: 860-76.
  • 119. Bakker HD, Scholte HR, Van den Bogert C, Jeneson JAL, Ruitenbeek W, Wanders RJA, et al. Adenine nucleotide translocator deficiency in muscle: potential therapeutic value of vitamin E. J Inherit Metab Dis 1993;16:548-52.
  • 120. Bakker HD, Scholte HR, Van Den Bogert C, Ruitenbeer W, Jeneson JAL, Wanders RJA, et al. Deficiency of the adenine nucleotide translocator in muscle of a patient with myopathy and lactic acidosis: a new mitochondrial defect. Pediatr Res 1993;33: 412-7.
  • 121. Echaniz-Laguna A, Chassagne M, Ceresuela J, Rouvet I, Padet S, Acquaviva C, et al. Complete loss of expression of the ANT1 gene causing cardiomyopathy and myopathy. J Med Genet 2012;49: 146-50.
  • 122. Palmieri L, Alberio S, Pisano I, Lodi T, Meznaric-Petrusa M, Zidar J, et al. Complete loss-of-function of the heart/muscle-specific adenine nucleotide translocator is associated with mitochondrial myopathy and cardiomyopathy. Hum Mol Genet 2005;14:3079-88.
  • 123. Körver-Keularts IMLW, de Visser M, Bakker HD, Wanders RJA, Vansenne F, Scholte HR, et al. Two novel mutations in the SLC25A4 gene in a patient with mitochondrial myopathy. JIMD Rep 2015;22:39-45. Springer.
  • 124. Kaukonen J, Juselius JK, Tiranti V, Kyttala A, Zeviani M, Comi GP, et al. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science 2000;289:782-5.
  • 125. Napoli L, Bordoni A, Zeviani M, Hadjigeorgiou GM, Sciacco M, Tiranti V, et al. A novel missense adenine nucleotide translocator-1 gene mutation in a greek adPEO family. Neurology 2001;57:2295-8.
  • 126. Komaki H, Fukazawa T, Houzen H, Yoshida K, Nonaka I, Goto Y-I. A novel D104G mutation in the adenine nucleotide translocator 1 gene in autosomal dominant progressive external ophthalmoplegia patients with mitochondrial DNA with multiple deletions. Ann Neurol 2002;51:645-8.
  • 127. Punzi G, Porcelli V, Ruggiu M, Hossain MF, Menga A, Scarcia P, et al. SLC25A10 biallelic mutations in intractable epileptic encephalopathy with complex I deficiency. Hum Mol Genet 2018; 27:499-504.
  • 128. Buffet A, Morin A, Castro-Vega L-J, Habarou F, Lussey-Lepoutre C, Letouzé E, et al. Germline mutations in the mitochondrial 2-oxoglutarate/malate carrier SLC25A11 gene confer a predisposition to metastatic paragangliomas. Canc Res 2018; 78:1914-22.
  • 129. Falk MJ, Li D, Gai X, McCormick E, Place E, Lasorsa FM, et al. AGC1 deficiency causes infantile epilepsy, abnormal myelination, and reduced N-acetylaspartate. JIMD Rep 2014;14:77-85. Springer.
  • 130. Wibom R, Lasorsa FM, Töhönen V, Barbaro M, Sterky FH, Kucinski T, et al. AGC1 deficiency associated with global cerebral hypomyelination. N Engl J Med 2009;361:489-95.
  • 131. Kobayashi K, Sinasac DS, Iijima M, Boright AP, Begum L, Lee JR, et al. The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein. Nat Genet 1999;22:159-63.
  • 132. Tomomasa T, Kobayashi K, Kaneko H, Shimura H, Fukusato T, Tabata M, et al. Possible clinical and histologic manifestations of adult-onset type II citrullinemia in early infancy. J Pediatr 2001;138:741-3.
  • 133. Yasuda T, Yamaguchi N, Kobayashi K, Nishi I, Horinouchi H, Jalil MA, et al. Identification of two novel mutations in the SLC25A13 gene and detection of seven mutations in 102 patients with adult-onset type II citrullinemia. Hum Genet 2000;107:537-45.
  • 134. Fiermonte G, Soon D, Chaudhuri A, Paradies E, Lee PJ, Krywawych S, et al. An adult with type 2 citrullinemia presenting in Europe. N Engl J Med 2008;358:1408-9.
  • 135. Ohura T, Kobayashi K, Tazawa Y, Nishi I, Abukawa D, Sakamoto O, et al. Neonatal presentation of adult-onset type II citrullinemia. Hum Genet 2001;108:87-90.
  • 136. Tamamori A, Okano Y, Ozaki H, Fujimoto A, Kajiwara M, Fukuda K, et al. Neonatal intrahepatic cholestasis caused by citrin deficiency: severe hepatic dysfunction in an infant requiring liver transplantation. Eur J Pediatr 2002;161:609-13.
  • 137. Tazawa Y, Kobayashi K, Ohura T, Abukawa D, Nishinomiya F, Hosoda Y, et al. Infantile cholestatic jaundice associated with adult-onset type II citrullinemia. J Pediatr 2001;138:735-40.
  • 138. Camacho JA, Obie C, Biery B, Goodman BK, Hu CA, Almashanu S, et al. Hyperornithinaemia-hyperammonaemia-homocitrullinuria syndrome is caused by mutations in a gene encoding a mitochondrial ornithine transporter. Nat Genet 1999;22:151-8.
  • 139. Camacho JA, Mardach R, Rioseco-Camacho N, Ruiz-Pesini E, Derbeneva O, Andrade D, et al. Clinical and functional characterization of a human ORNT1 mutation (T32R) in the hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome. Pediatr Res 2006;60:423-9.
  • 140. Miyamoto T, Kanazawa N, Kato S, Kawakami M, Inoue Y, Kuhara T, et al. Diagnosis of Japanese patients with HHH syndrome by molecular genetic analysis: a common mutation, R179X. J Hum Genet 2001;46:260-2.
  • 141. Nakajima M, Ishii S, Mito T, Takeshita K, Takashima S, Takakura H, et al. Clinical, biochemical and ultrastructural study on the pathogenesis of hyperornithinemia-hyperammonemiahomocitrullinuria syndrome. Brain Dev 1988;10:181-5.
  • 142. Salvi S, Santorelli FM, Bertini E, Boldrini R, Meli C, Donati A, et al. Clinical and molecular findings in hyperornithinemiahyperammonemia-homocitrullinuria syndrome. Neurology 2001;57:911-4.
  • 143. Rosenberg MJ, Agarwala R, Bouffard G, Davis J, Fiermonte G, Hilliard MS, et al. Mutant deoxynucleotide carrier is associated with congenital microcephaly. Nat Genet 2002;32:175-9.
  • 144. Spiegel R, Shaag A, Edvardson S, Mandel H, Stepensky P, Shalev SA, et al. SLC25A19 mutation as a cause of neuropathy and bilateral striatal necrosis. Ann Neurol 2009;66:419-24.
  • 145. Huizing M, Wendel U, Ruitenbeek W, Iacobazzi V, Ijlst L, Veenhuizen P, et al. Carnitine-acylcarnitine carrier deficiency: identification of the molecular defect in a patient. J Inherit Metab Dis 1998;21:262-7.
  • 146. Huizing M, Iacobazzi V, Ijlst L, Savelkoul P, Ruitenbeek W, Van Den Heuvel L, et al. Cloning of the human carnitineacylcarnitine carrier cDNA and identification of the molecular defect in a patient. Am J Hum Genet 1997;61:1239-45.
  • 147. Costa C, Costa JM, Nuoffer JM, Slama A, Boutron A, Saudubray JM, et al. Identification of the molecular defect in a severe case of carnitine-acylcarnitine carrier deficiency. J Inherit Metab Dis 1999;22:267-70.
  • 148. Ogawa A, Yamamoto S, Kanazawa M, Takayanagi M, Hasegawa S, Kohno Y. Identification of two novel mutations of the carnitine/acylcarnitine translocase (CACT) gene in a patient with CACT deficiency. J Hum Genet 2000;45:52-5.
  • 149. Stanley CA, Hale DE, Berry GT, Deleeuw S, Boxer J, Bonnefont J-P. A deficiency of carnitine-acylcarnitine translocase in the inner mitochondrial membrane. N Engl J Med 1992;327:19-23.
  • 150. Fukushima T, Kaneoka H, Yasuno T, Sasaguri Y, Tokuyasu T, Tokoro K, et al. Three novel mutations in the carnitine-acylcarnitine translocase (CACT) gene in patients with CACT deficiency and in healthy individuals. J Hum Genet 2013;58:788-93.
  • 151. Al Aqeel AI, Rashid MS, Pn Ruiter J, Ijlst L, Ja Wanders R. A novel molecular defect of the carnitine acylcarnitine translocase gene in a Saudi patient. Clin Genet 2003;64:163-5.
  • 152. Iacobazzi V, Pasquali M, Singh R, Matern D, Rinaldo P, di San Filippo CA, et al. Response to therapy in carnitine/ acylcarnitine translocase (CACT) deficiency due to a novel missense mutation. Am J Med Genet 2004;126A:150-5.
  • 153. Boczonadi V, King MS, Smith AC, Olahova M, Bansagi B, Roos A, et al. Mitochondrial oxodicarboxylate carrier deficiency is associated with mitochondrial DNA depletion and spinal muscular atrophy-like disease. Genet Med 2018;20:1224-35.
  • 154. Molinari F, Kaminska A, Fiermonte G, Boddaert N, Raas-Rothschild A, Plouin P, et al. Mutations in the mitochondrial glutamate carrier SLC25A22 in neonatal epileptic encephalopathy with suppression bursts. Clin Genet 2009;76:188-94.
  • 155. Molinari F, Raas-Rothschild A, Rio M, Fiermonte G, Encha-Razavi F, Palmieri L, et al. Impaired mitochondrial glutamate transport in autosomal recessive neonatal myoclonic epilepsy. Am J Hum Genet 2005;76:334-9.
  • 156. Poduri A, Heinzen EL, Chitsazzadeh V, Lasorsa FM, Elhosary PC, LaCoursiere CM, et al. SLC25A22 is a novel gene for migrating partial seizures in infancy. Ann Neurol 2013;74:873-82.
  • 157. Adolphs N, Klein M, Haberl EJ, Graul-Neumann L, Menneking H, Hoffmeister B. Necrotizing soft tissue infection of the scalp after fronto-facial advancement by internal distraction in a 7-year old girl with Gorlin-haudhry-Moss syndrome - a case report. J Cranio-Maxillofacial Surg 2011;39:554-1.
  • 158. Ehmke N, Graul-Neumann L, Smorag L, Koenig R, Segebrecht L, Magoulas P, et al. De novo mutations in SLC25A24 cause a craniosynostosis syndrome with hypertrichosis, progeroid appearance, and mitochondrial dysfunction. Am J Hum Genet 2017;101:833-3.
  • 159. Faivre L, Van Kien PK, Madinier-Chappat N, Nivelon-Chevallier A, Beer F, LeMerrer M. Can Hutchinson-Gilford progeria syndrome be a neonatal condition? Am J Med Genet 1999;87:450-.
  • 160. Castori M, Silvestri E, Pedace L, Marseglia G, Tempera A, Antigoni I, et al. Fontaine–Farriaux syndrome: a recognizable craniosynostosis syndrome with nail, skeletal, abdominal, and central nervous system anomalies. Am J Med Genet Part A 2009; 149A:2193-9.
  • 161. Writzl K, Maver A, Kovačič L, Martinez-Valero P, Contreras L, Satrustegui J, et al. De novo mutations in SLC25A24 cause a disorder characterized by early aging, bone dysplasia, characteristic face, and early demise. Am J Hum Genet 2017;101:844-55.
  • 162. Rodríguez JI, Pérez-Alonso P, Funes R, Pérez-Rodríguez J. Lethal neonatal Hutchinson-Gilford progeria syndrome. Am J Med Genet 1999;82:242-8.
  • 163. Kishita Y, Pajak A, Bolar NA, Marobbio CMT, Maffezzini C, Miniero DV, et al. Intra-mitochondrial methylation deficiency due to mutations in SLC25A26. Am J Hum Genet 2015;97:761-8.
  • 164. Schiff M, Veauville-Merllié A, Su CH, Tzagoloff A, Rak M, Ogier de Baulny H, et al. SLC25A32 mutations and riboflavinresponsive exercise intolerance. N Engl J Med 2016;374:795-7.
  • 165. Guernsey DL, Jiang H, Campagna DR, Evans SC, Ferguson M, Kellogg MD, et al. Mutations in mitochondrial carrier family gene SLC25A38 cause nonsyndromic autosomal recessive congenital sideroblastic anemia. Nat Genet 2009;41:651-3.
  • 166. Almannai M, Alasmari A, Alqasmi A, Faqeih E, Al Mutairi F, Alotaibi M, et al. Expanding the phenotype of SLC25A42- associated mitochondrial encephalomyopathy. Clin Genet 2018; 93:1097-102.
  • 167. Iuso A, Alhaddad B, Weigel C, Kotzaeridou U, Mastantuono E, Schwarzmayr T, et al. A homozygous splice site mutation in SLC25A42, encoding the mitochondrial transporter of coenzyme a, causes metabolic crises and epileptic encephalopathy. JIMD Rep 2019;44:1-7. Springer.
  • 168. Shamseldin HE, Smith LL, Kentab A, Alkhalidi H, Summers B, Alsedairy H, et al. Mutation of the mitochondrial carrier SLC25A42 causes a novel form of mitochondrial myopathy in humans. Hum Genet 2016;135:21-30.
  • 169. Abrams AJ, Hufnagel RB, Rebelo A, Zanna C, Patel N, Gonzalez MA, et al. Mutations in SLC25A46, encoding a UGO1-like protein, cause an optic atrophy spectrum disorder. Nat Genet 2015;47: 926-32.
  • 170. Wan J, Steffen J, Yourshaw M, Mamsa H, Andersen E, RudnikSchöneborn S, et al. Loss of function of SLC25A46 causes lethal congenital pontocerebellar hypoplasia. Brain 2016;139:2877-90.
  • 171. Charlesworth G, Balint B, Mencacci NE, Carr L, Wood NW, Bhatia KP. SLC25A46 mutations underlie progressive myoclonic ataxia with optic atrophy and neuropathy. Mov Disord 2016;31: 1249-51.
  • 172. Janer A, Prudent J, Paupe V, Fahiminiya S, Majewski J, Sgarioto N, et al. SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome. EMBO Mol Med 2016;8:1019-38.
  • 173. Esterbauer H, Schneitler C, Oberkofler H, Ebenbichler C, Paulweber B, Sandhofer F, et al. A common polymorphism in the promoter of UCP2 is associated with decreased risk of obesity in middle-aged humans. Nat Genet 2001;28:178-83.
  • 174. Bulotta A, Ludovico O, Coco A, Di Paola R, Quattrone A, Carella M, et al. The common -866G/A polymorphism in the promoter region of the UCP-2 gene is associated with reduced risk of type 2 diabetes in Caucasians from Italy. J Clin Endocrinol Metab 2005;90:1176-80.
  • 175. Argyropoulos G, Brown AM, Willi SM, Zhu J, He Y, Reitman M, et al. Effects of mutations in the human uncoupling protein 3 gene on the respiratory quotient and fat oxidation in severe obesity and type 2 diabetes. J Clin Invest 1998;102:1345-51.
  • 176. Brown AM, Willi SM, Argyropoulos G, Garvey WT. A novel missense mutation, R70W, in the human uncoupling protein 3 gene in a family with type 2 diabetes. Hum Mutat 1999;13:506.
  • 177. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem 2004;25: 1605-12.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84fc6225-8b13-4c93-9a2c-3dfb6ec0b229
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.