Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study examined the biosorption process of Ni(II) and Zn(II) from an aqueous solution by dead biomass of Yarrowia lipolytica. Optimum biosorption conditions were determined as a function of pH, biomass dosage, contact time, and temperature. The biosorbent was characterized by FTIR, which indicated the participation of hydroxyl, carboxyl, amide and amine groups in the process of binding the metal ions. The results showed that the biosorption processes of both metal ions closely followed pseudo-second order kinetics. The equilibrium data of Ni(II) and Zn(II) ions at 20, 30 and 40°C fitted the Langmuir and Freundlich isotherm models. Langmuir isotherm provided a better fit to the equilibrium data, with a maximum biosorption capacity of the Y. lipolytica biomass for Ni(II) and Zn(II) of 30.12 and 44.44 mg/g respectively. The calculated thermodynamic parameters demonstrated that the biosorption of Ni(II) and Zn(II) ions onto the Y. lipolytica was feasible, spontaneous and endothermic.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--10
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
- University of Opole, Independent Department of Biotechnology and Molecular Biology, Kardynała Kominka 6a, 40-035 Opole, Poland
Bibliografia
- 1. Joo, J.H., Hassan, S.H.A. & Oh, S.E. (2010). Comparative study of biosorption of Zn2+ by Pseudomonas aeruginosa and Bacillus cereus. Int. Biodeter. Biodegr. 64, 734–741. DOI: 10.1016/j.ibiod.2010.08.007.
- 2. Mudhoo, A., Garg, V.K. & Wang, S. (2012). Heavy Metals: Toxity and Removal by Biosorption. Lichtfouse, E., Schwarzbauer, J. & Robert, D. (Eds.), Environmental Chemistry for a Sustainable World: Volume 2: Remediation of Air and Water Pollution (pp. 379–442). Springer Science+Business Media B.V.
- 3. Shinde, N.R., Bankar, A.V., Kumar, A.R. & Zinjarde, A.A. (2012). Removal of Ni (II) ions from aqueous solutions by biosorption onto two strains of Yarrowia lipolytica. J. Environ. Manag. 102, 115–124. DOI: 10.1016/j.jenvman.2012.02.026.
- 4. Gavrilescu, M. (2010). Biosorption in Environmental Remediation. Fulekar, M.H. (Eds.) Bioremed. Technol.: Rec. Adv. (pp. 35–99). Capital Publishing Company. DOI: 10.1007/978-90-481-3678-0_1.
- 5. Wang, J. & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27, 195–226. DOI: 10.1016/j.biotechadv.2008.11.002.
- 6. Beopoulos, A., Chardot, T. & Nicaud, J.M. (2009). Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie 91, 692–696. DOI: 10.1016/j.biochi.2009.02.004.
- 7. Bankar, A.V., Kumar, A.R. & Zinjarde, S.S. (2009). Environmental and industrial applications of Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 84, 847–865. DOI: 10.1007/s00253-009-2156-8.
- 8. Lanciotti, R., Gianotti, A., Baldi, D., Angrisani, R., Suzzi, G., Mastrocola, D. & Guerzoni, M.E. (2005). Use of Yarrowia lipolytica strains for the treatment of olive mill wastewater. Biores. Technol. 96, 317–322. DOI: 10.1016/j.biortech.2004.04.009.
- 9. Lagergren, S. (1898). Zur theorie der sogenannten adsorptiong gelöster stoffe. Kungliga Svenska Vetenskapsakad. Stockholm: Handlingar. Bihang. 24(4), 1–39.
- 10. Ho, Y.S. & McKay, G. (1999). Pseudo-second order model for sorption processes. Process. Biochem. 34(5), 451–465.
- 11. Ertugay, N. & Bayhan, T.K. (2008). Biosorption of Cr(VI) from aqueous solution by biomass of Agaricus bisporus. J. Hazard. Mater. 154, 432–439. DOI: 10.1016/j.jhazmat.2007.10.070.
- 12. Weber, W.J. & Morris, J.C. (1963). Intraparticle diffusion during the sorption of surfactants onto activated carbon. J. Sanit Eng. Div. Am. Soc. Civ. Eng. 89, 53–61.
- 13. Blázquez, G., Martín-Lara, M.A., Tenorio, G. & Calero, M. (2011). Batch biosorption of lead(II) from aqueous solutions by olive tree pruning waste: Equilibrium, kinetics and termodynamic study. Chem. Eng. J. 168, 170–177. DOI: 10.1016/j.cej.2010.12.059.
- 14. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403. DOI: 10.1021/ja02242a004.
- 15. Freundlich, H.M.F. (1906). Uber Die Adsorption in Losungen. Zeitschrift For Physikalische Chemie 57A, 385–470.
- 16. Lin, Y., Wang, X., Wang, B., Mohamad, O. & Wei, G. (2012). Bioaccumulation characterization of zinc and cadmium by Streptomyces zinciresistens, a novel actinomycete. Ecotox. Environ. Safe. 77, 7–17. DOI: 10.1016/j.ecoenv.2011.09.016.
- 17. Yin, H., He, B., Peng, H., Ye, J., Yang, F. & Zhang, N. (2008). Removal of Cr(VI) and Ni(II) from aqueous solution by fused yeast: Study of cations release and biosorption mechanism. J. Hazard. Mater. 158, 568–576. DOI: 10.1016/j.hazmat.2008.01.113.
- 18. Ahmad, M.F., Haydar, S. & Quraishi, A. (2013). Enhancement of biosorption of zinc ions from aqueous solution by immobilized Candida utilis and Candida tropicalis cells. Int. Biodeter. Biodegr. 83, 119–128. DOI: 10.1016/j.ibiod.2013.04.016.
- 19. Asfaram, A., Ghaedi, M. & Ghezelbash, G.R. (2016). Biosorption of Zn2+, Ni2+ and Co2+ from water samples onto Yarowia lipolytica ISF7 using a response Surface mathodology, and analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES). RSC Adv. 6, 23599–23610. DOI: 10.1039/c5ra27170c.
- 20. Sari, A., Tuzen, M., Uluözlü, Ö.D. & Soylak, M. (2007). Biosorption of Pb(II) and Ni(II) from aqueous solution by lichen (Cladonia furcata) biomass. Biochem. Eng. J. 37, 151–158. DOI: 10.1016/j.bej.2007.04.007.
- 21. Liu, Y., Cao, Q., Luo, F. & Chen, J. (2009). Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown alge. J. Hazard. Mater. 163, 931–938. DOI: 10.1016/j.jhazmat.2008.07.046.
- 22. Özer, A. & Özer, D. (2003). Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. J. Hazard. Mater. B100, 219–229. DOI: 10.1016/S0304-3894(03)00109-2.
- 23. Li, H., Lin, Y., Guan, W., Chang, J., Xu, L., Guo, J. & Wei, G. (2010). Biosorption of Zn(II) by loive and dead cells of Streptomyces ciscaucasicus strain CCNWHX 72–14. J. Hazard. Mater. 179, 151–159. DOI: 10.1016/j.hazmat.2010.02.072.
- 24. Pahlavanzadeh, H., Keshtkar, A.R., Safdari, J. & Abadi, Z. (2010). Biosorption of nickel(II) from aqueous solution by brown alge: Equilibrium, dynamic and thermodynamic studies. J. Hazard. Mater. 175, 304–310. DOI: 10.1016/j.jhazmat.2009.10.004.
- 25. Munagapati, V.S., Yarramuthi, V., Nadavala, S.K., Alla, S.R. & Abburi, K. (2010). Biosorption of Cu(II), Cd(II) and Pb(II) by Acacia leucocephala bark powder: Kinetics, equilibrium and thermodynamics. Chem. Eng. J. 157, 357–365. DOI: 10.1016/j.cej.2009.11.015.
- 26. Subbaiah, M.V. & Yun, Y.S. (2013). Biosorption of Nickel(II) from Aqueous Solution by the Fungal Mat of Trametes versicolor (Rainbow) Biomass: Equilibrium, Kinetics, and Thermodynamic Studies. Biotechnol. Bioproc. E. 18, 280–288. DOI: 10.1007/s12257-012-0401-y.
- 27. Akhtar, K., Akhtar, M.W. & Khalid, A.M. (2008). Removal and recovery of zirconium from its aqueous solution by Candida tropicalis. J. Hazard. Mater. 156, 108–117. DOI: 10.1016/j.jhazmat.2007.12.002.
- 28. Baysal, Z., Çinar, E., Bulut, Y., Alkan, H. & Dogru, M. (2009). Equilibrum and thermodynamic studies on biosorption of Pb(II) onto Candida ablicans biomass. J. Hazard. Mater. 161, 62–67. DOI: 10.1016/j.hazmat.2008,02,122.
- 29. Witek-Krowiak, A. (2012). Analysis of temperature-dependent biosorption of Cu2+ ions on sunfl ower hulls: Kinetics, equilibrium and mechanizm of the proces. Chem. Eng. J. 192, 13–20. DOI: 10.1016/j.cej.2012.03.075.
- 30. Bueno, B.Y.M., Torem, M.L., Carvalho, R.J., Pino, G.A.H. & Mesquita, L.M.S. (2011). Fundamental aspects of biosorption of lead (II) ions onto a Rhodococcus oparus strain for environmental applications. Miner. Eng. 24, 1619–1624. DOI: 10.1016/j.mineng.2011.08.018.
- 31. Suazo-Madrid, A., Morales-Barrera, L., Aranda-García, E. & Cristiani-Urbina, E. (2011). Nickel(II) biosorption by Rhodotorula glutinis. J. Ind. Microbiol. Biot. 38, 51–64. DOI: 10.1007/s.10295-010-0828-0.
- 32. Farhan, S.N. & Khadom, A.A. (2015). Biosorption of heavy metals from aqueous solutions by Saccharomyces cerevisiae. Int. J. Ind. Chem. 6, 119–130. DOI: 10.1007/s40090-015-0038-8.
- 33. Horsfall, M. & Spiff, A.I. (2005). Effects of temperature on the sorption of Pb2+ and Cd2+ grom aqueous solution by Caladium bicolor (Wild cocoyam) biomass. Electron. J. Biotech. 8(2), 162–169. DOI: 10.2225/vol8-issue2-fulltext-4.
- 34. Usul, G. & Tanyol, M. (2006). Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida: Effect of temperature. J. Hazard. Mater. B135, 87–93. DOI: 10.1016/j.jhazmat.2005.11.029.
- 35. Chen, X.C., Wang, Y.P., Lin, Q., Shi, J.Y., Wu, W.X. & Chen, Y.X. (2005). Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloid Surf. B. 46, 101–107. DOI: 10.1016/j.colsurfb.2005.10.003.
- 36. Nasernejad, B., Zadeh, T.E., pour, B.B., Bygi, M.E. & Zamani, A. (2005). Camparison for biosorption modeling of heavy metals (Cr(III), Cu(II), Zn(II)) adsorption from wastewater by carrot residues. Proces Biochem. 40, 1319–1322. DOI: 10.1016/j.procbio.2004.06.010.
- 37. Celaya, R.J., Noriega, J.A., Yeomans, J.H., Ortega, L.J. & Ruiz-Manriquez, A. (2000). Biosorption of Zn(II) by ThiobaThiobacillus ferrooxidans. Bioprocess. Eng. 22, 539–542. DOI: 10.1007/s004499900106.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b4d2d4f-d2dd-4e1d-a3d9-11d203e57e84