Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Using traditional failure mode effects and criticality analysis (FMECA) to analyze the hazard of subway sliding plug door system, there are problems such as easy-to-take repetitive values, irrational allocation of expert's weights, and failure to consider the weights of evaluation factors. To address the above problems, this paper proposes an improved FMECA by using linear interpolation to increase the differentiation of the same fault probability occurrence among various fault modes. Apply the dependent uncertain ordered weighted averaging (DUOWA) algorithm to assign weights to different experts dynamically. The analytic hierarchy process (AHP) is used to endow weights to diverse evaluation factors to make them more suitable for engineering needs. We collected 1,836 days of metro train operation records from the Shanghai subway manufacturing plant and studied 17 common faults. Next, use a reliability-centered maintenance (RCM) strategy to determine maintenance periods for different fault modes. Finally, through the Weibull distribution fitting test, the fault rate function of the door is obtained, and the remaining useful life (RUL) of the door is predicted. The consistency between the vulnerable parts obtained by our proposed method and the statistics of the maintenance records of the subway sliding plug door verifies the effectiveness and reliability of our improved FMECA.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. 178275
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
autor
- The School of Electrical Engineering and Electronic Information, Xihua University, China
autor
- The School of Electrical Engineering and Electronic Information, Xihua University, China
autor
- The School of Electrical Engineering and Electronic Information, Xihua University, China
autor
- The State Grid Sichuan Electric Power Research Institute, China
autor
- The School of Electrical Engineering, Southwest Jiaotong University, China
autor
- China Broadnet Pengzhou Branch, Chengdu 611930, China
autor
- The School of Electrical Engineering, Southwest Jiaotong University, China
Bibliografia
- 1. Aminudin N, Huda M, Suhaila Ihwani S. The family hope program using AHP method[J]. International Journal of Engineering & Technology, 2018, 7: 188-. https://doi.org/10.14419/ijet.v7i2.27.11522
- 2. Abrahamsen EB, Milazzo MF, Selvik JT. Prioritising investments in safety measures in the chemical industry by using the Analytic Hierarchy Process[J]. Reliability Engineering & System Safety, 2020, 198: 106811-. https://doi.org/10.1016/j.ress.2020.106811
- 3. Bai W, Liu R, Sun Q. A stochastic model for the estimation of renewal periods of sharply curved metro rails[J]. A stochastic model for the estimation of renewal periods of sharply curved metro rails, 2018, 232(2): 572-588. https://doi.org/10.1177/0954409716679449
- 4. Benzerra A, Cherrared M, Chocat B. Decision support for sustainable urban drainage system management: A case study of Jijel, Algeria[J]. Journal of Environmental Management, 2012, 101:46-53. https://doi.org/10.1016/j.jenvman.2012.01.027
- 5. Brauer DC, Brauer GD. Reliability-Centered Maintenance[J]. IEEE Transactions on Reliability, 1987, 36(1): 17-24. https://doi.org/10.1109/TR.1987.5222285
- 6. Cheng X, Xing Z, Qin Y. Reliability analysis of metro door system based on FMECA[J]. Journal of Intelligent Learning Systems and Applications, 2013, 5: 216-220. https://doi.org/10.4236/jilsa.2013.54024
- 7. Ciani L, Guidi G, Patrizi G. Fuzzy-based approach to solve classical risk priority number drawbacks for railway signaling systems[J]. IEEE Intelligent Transportation Systems Magazine, 2023, 15(1): 36-47. https://doi.org/10.1109/MITS.2021.3121433
- 8. Cheng CH, Chang JR. MCDM aggregation model using situational ME-OWA and ME-OWGA operators[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2006, 14(4): 421-443. https://doi.org/10.1142/S0218488506004102
- 9. Catelani M, Ciani L, Galar D. FMECA assessment for railway safety-critical systems investigating a new risk threshold method[J]. IEEE Access, 2021, 9: 86243-86253. https://doi.org/10.1109/ACCESS.2021.3088948
- 10. Deng Y, Song L, Zhou J. Analysis of failures and influence factors of critical infrastructures: a case of metro[J]. Advances in Civil Engineering, 2020, 2020: 1-13. https://doi.org/10.1155/2020/2301276
- 11. Daya A A, Lazakis I. Developing an advanced reliability analysis framework for marine systems operations and maintenance[J]. Ocean Engineering, 2023, 272: 113766. https://doi.org/10.1016/j.oceaneng.2023.113766
- 12. Dialynas EN. Reliability centered maintenance using a predictable strategy-Application for 20KV traction transformers[A]. MedPower 2014, Athens, Greece, 2014, 77: 7-. https://doi.org/10.1049/cp.2014.1710
- 13. Deng B, Wang X, Jiang D. Description of the statistical variations of the measured strength for brittle ceramics: A comparison between two-parameter Weibull distribution and normal distribution[J]. Processing and Application of Ceramics, 2020, 14(4): 293-302. https://doi.org/10.2298/PAC2004293D
- 14. Dong M, Nassif AB. Combining modified weibull distribution models for power system reliability forecast[J]. IEEE Transactionson Power Systems, 2019, 34(2): 1610-1619. https://doi.org/10.1109/TPWRS.2018.2877743
- 15. Fang F, Zhao Z, Huang C. Application of reliability-centered maintenance in metro door system[J]. IEEE Access, 2019, 7: 186167-186174. https://doi.org/10.1109/ACCESS.2019.2960521
- 16. Gao J, Heng F, Yuan Y. A novel machine learning method for multiaxial fatigue life prediction: Improved adaptive neuro-fuzzy inference system[J]. International Journal of Fatigue, 2024,178: 108007. https://doi.org/10.1016/j.ijfatigue.2023.108007
- 17. Gao J, Heng F, Yuan Y. Fatigue reliability analysis of composite material considering the growth of effective stress and critical stiffness[J]. Aerospace, 2023, 10(9): 785. https://doi.org/10.3390/aerospace10090785
- 18. Ghomghaleh A, Khaloukakaie R, Ataei M, Barabadi A. Prediction of remaining useful life (RUL) of Komatsu excavator under reliability analysis in the Weibull-frailty model[J]. PLOS ONE, 2020, 15(7): e0236128-. https://doi.org/10.1371/journal.pone.0236128
- 19. Huang J, Guo S, Jiang J. Fault Diagnosis of subway sliding plug door based on machine learning and motor current signal[A]. IEEE 11th Data Driven Control and Learning Systems Conference, Chengdu, China, 2022, 363-367. https://doi.org/10.1109/DDCLS55054.2022.9858351
- 20. Hlinka J, Kostial R, Horpatzka M. Application of enhanced methods for safety assessment of FADEC[J]. Eksploatacja i Niezawodność –Maintenance and Reliability, 2021, 23(1):63-73. https://doi.org/10.17531/ein.2021.1.7
- 21. Herp J, Pedersen NL, Nadimi ES. Assessment of early stopping through statistical health prognostic models for empirical RUL estimation in wind turbine main bearing failure monitoring[J]. Energies, 2019, 13(1): 83-. https://doi.org/10.3390/en13010083
- 22. He D, Zhang X, Ge C. A novel reliability-centered opportunistic maintenance strategy for metro train complex systems[J]. IEEE Intelligent Transportation Systems Magazine, 2022, 14(3): 146-159. https://doi.org/10.1109/MITS.2020.3014080
- 23. Hoh HJ, Wang J, Pang JHL. Metro door system reliability, availability and maintainability analysis[A]. International Conference on Intelligent Rail Transportation, Singapore, 2018, 13-. https://doi.org/10.1109/ICIRT.2018.8641591
- 24. Iadanza E, Zacchia M, Pennati D. Fuzzy FMECA process analysis for managing the risks in the lifecycle of a CBCT scanner[J]. IEEE Access, 2021, 9: 135723-135741. https://doi.org/10.1109/ACCESS.2021.3117703
- 25. Jiang D, Han Y, Cui W. An improved modified Weibull distribution applied to predict the reliability evolution of an aircraft lock mechanism[J]. Probabilistic Engineering Mechanics, 2023, 72: 103449-. https://doi.org/10.1016/j.probengmech.2023.103449
- 26. Kundu P, Chopra S, Lad BK. Multiple failure behaviors identification and remaining useful life prediction of ball bearings[J]. Journal of Intelligent Manufacturing, 2019, 30(4): 1795-1807. https://doi.org/10.1007/s10845-017-1357-8
- 27. Kusyi Y, Stupnytskyy V, Onysko O. Optimization synthesis of technological parameters during manufacturing of the parts[J]. Eksploatacja i Niezawodność –Maintenance and Reliability, 2022, 24(4): 655–667. https://doi.org/10.17531/ein.2022.4.6
- 28. Lv J, Xu S, Zhang R. Safety analysis of metro turnouts based on fuzzy FMECA[A]. IEEE International Conference on Internet of Things and IEEE Green Computing and Communications and IEEE Cyber, Physical and Social Computing and IEEE Smart Data, Halifax, NS, Canada, 2018, 599-606. https://doi.org/10.1109/Cybermatics_2018.2018.00123
- 29. Qi H, Chen G, Ma H. A subway sliding plug door system health state adaptive assessment method based on interval intelligent recognition of rotational speed operation data curve[J]. Machines, 2022, 10(11): 1075-. https://doi.org/10.3390/machines10111075
- 30. Qin Y, Yu S, Shi J. Reliability analysis based on the statistical models method for the subway door system[A]. IEEE International Conference on Intelligent Rail Transportation, Beijing, China, 2013, 215-220. https://doi.org/10.1109/ICIRT.2013.6696296
- 31. Rodrigues J, Farinha J, Mendes M. Short and long forecast to implement predictive maintenance in a pulp industry[J]. Eksploatacja i Niezawodność –Maintenance and Reliability, 2022, 24(1): 33–41. https://doi.org/10.17531/ein.2022.1.5
- 32. Rail Transportation Reliability, Availability, Maintainability, and Safety Specifications and Examples, GB/T 21562-2008, 56.
- 33. Rosin P. Laws governing the fineness of powdered coal[J]. Journal of Institute of Fuel, 1933, 7.
- 34. Tsuboi T, Takami J, Okabe S. Transformer insulation reliability for moving oil with weibull analysis[J]. IEEE Transactions onDielectrics and Electrical Insulation, 2011, 17(3): 978-983. https://doi.org/10.1109/TDEI.2010.5492275
- 35. Uzuner Şahi̇N M, Dengi̇Z O, Dengi̇Z B. Yedek bileşen tahsis probleminde eniyileme: Genetik algoritma ve kesikli olaylıMonte Carlo benzetimi[J]. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 2023, 39(1): 535–548. https://doi.org/10.17341/gazimmfd.1107901
- 36. Wang W, Liu W, Lin C. Fault detection system of subway sliding plug door based on adaptive EMD method[J]. Measurement Scienceand Technology, 2024, 35(1): 015102-. https://doi.org/10.1088/1361-6501/acfb2c
- 37. Wang L, Gao Y, Xu W. An extended FMECA method and its fuzzy assessment model for equipment maintenance management optimization[J]. Journal of Failure Analysis and Prevention, 2019, 19(2): 350-360. https://doi.org/10.1007/s11668-019-00611-3
- 38. Wang X, Gao X, Xing Z. Application of DEMATEL in metro door system reliability research[A]. 10th International Conference on Reliability, Maintainability and Safety, Guangzhou, China, 2014, 618-622. https://doi.org/10.1109/ICRMS.2014.7107270
- 39. Wang J, Yin H. Failure rate prediction model of substation equipment based on Weibull distribution and time series analysis[J]. IEEE ACCESS, 2019, 7: 85298-85309. https://doi.org/10.1109/ACCESS.2019.2926159
- 40. Xu Z. Dependent uncertain ordered weighted aggregation operators[J]. Information Fusion, 2008, 9(2): 310-316. https://doi.org/10.1016/j.inffus.2006.10.008
- 41. Yao B, Ge X, Wang H. Multitimescale reliability evaluation of DC-Link capacitor banks in metro traction drive system[J]. IEEE Transactions on Transportation Electrification, 2020, 6(1): 213-227. https://doi.org/10.1109/TTE.2020.2974182
- 42. Yager RR. On ordered weighted averaging aggregation operators in multicriteria decision making[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1988, 18(1): 183-190. https://doi.org/10.1109/21.87068
- 43. Yang L, Li C, Lu L. Evaluation of port emergency logistics systems based on grey analytic hierarchy process[J]. Journal of Intelligent & Fuzzy Systems, 2020, 39(3): 4749-4761. https://doi.org/10.3233/JIFS-200674
- 44. Yang X, He Y, Zhou D. Mission reliability–centered maintenance approach based on quality stochastic flow network for multistate manufacturing systems[J]. Eksploatacja i Niezawodność –Maintenance and Reliability, 2022, 24(3): 455–467. https://doi.org/10.17531/ein.2022.3.7
- 45. Zhu P, Gao J, Yuan Y. An improved multiaxial low-cycle fatigue life prediction model based on equivalent strain approach[J]. Metals, 2023, 13(3): 629.https://doi.org/10.3390/met13030629
- 46. Zúñiga A A, Fernandes J F P, Branco P J C. Fuzzy-based failure modes, effects, and criticality analysis applied to cyber-power grids[J]. Energies, 2023, 16(8): 3346. https://doi.org/10.3390/en16083346
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-616d87db-c276-4a8d-a993-ab9cc02befef